
11.1 Computational Toolbox—Tools of the Trade: Maple Tutorial 6

File: MapleTutorial6.mw

Introduction to Computational Science: Modeling and Simulation for the Sciences
Angela B. Shiflet and George W. Shiflet

Wofford College
© 2006 by Princeton University Press

Introduction
The prerequisites to this tutorial are Maple Tutorials 1-5. Tutorial 6 introduces the following features,
which simulations of this chapter employ: joining sublists, length of a list, two methods for visualizing
grids, types, and defining rules.

Joining Sublists
By specifying a range of indices, we can obtain a sublist of a list. For example, lst[1..3] returns a sublist
with the first three elements of list lst. Moreover, op(lst[1..3]) returns a sequence of these elements. For
example, the following command defines a list , alphas , of strings with letters.

> alphas := ["a", "b", "c", "d", "e", "f", "g"]:

With a range designation of 1..3, we obtain a sublist of the first three elements:

> alphas[1..3];

The following gives a sequence of these elements, which are not in a list:

> op(alphas[1..3]);

We can specify the fifth element of the list using the index 5, as follows:

> alphas[5];

Using this same notation in a sequence, Maple can return the concatenation , or joining, of parts of a list
without changing the original list.

The command below returns a three-element list consisting of the fifth element of alphas , a list with the
first three elements of alphas , and the last element of alphas , which has index -1. To have the values in a
list, we enclose the sequence in brackets.

> [alphas[5], alphas[1..3], alphas[-1]];

If we do not want the first three elements of alphas in brackets, we apply op, as follows, and obtain a
five-element list:

> [alphas[5], op(alphas[1..3]), alphas[-1]];

Quick Review Question 1 Do anything that is asked of you in cells that look like this one, marked
as a Quick Review Question in boldface. Because such cells are text cells and not input cells, do not
type in these cells. Instead, if a greater than prompt (>) does not appear in an otherwise empty
execution group below, from the Insert menu, Execution Group submenu, select After Cursor .
Alternatively, use the shortcut indicated on that menu or click the icon ([>) to "Insert executable
Maple input after the current paragraph."

a. Using the 3-by-3 array mat below, return a list containing the last row. Thus,the returned list is
[[7,8,9]].

> mat := [[1, 2, 3], [4, 5, 6], [7, 8, 9]]:

b. Write a command to return an array that is equal to mat except the last row of mat appears as
the first and last rows of the new matrix. Thus, the new matrix has four rows, and its second,
third and fourth rows are equal to the rows of mat. In your command, do not type specific
numbers from mat but use Maple notation to take a sublist, join it to the sequence of elements in
mat, and place the results in a list. Display the answer as a rectangular array of numbers.

c. Write a command to return a list with the last row of mat, all the rows of mat, and the first row of
mat. Thus, for mat having three rows, the new matrix has five rows. Display the answer as a
rectangular array of numbers.

Length
For generality in functions, it is sometimes useful to obtain a list's length, or the number of elements at the
top level of the list. The following form using the Maple function nops returns the number of elements in
expr:

 nops(expr)

The length returned for each of the lists below is 3. In the second example, the elements are lists.

> nops(["a", "b", "c"]);

> nops([[1, 2], [0.7, [[[8]]]], []]);

Quick Review Question 2 Write a statement to assign to lst a list of all zeros that is of random
length between 5 and 15 elements. Display the length of lst.

Grid Graphics
Frequently, simulations involve evolving rectangular arrays of numbers, and pictorial representations of
these matrices can help scientists understand the information. For example, the segment below defines a
procedure val that generates random integers 0, 1, or 2, and forms a 3-by-3 matrix, mat02, or list of n = 3
lists, each consisting of three such integers. The last statement in the segment displays mat02 as a
rectangular array.

> n := 3:
val := rand(0..2):
mat02 := [seq(
 [seq(val(), j = 1..n)],
 i = 1..n)]:
convert(mat02, array);

The Maple function listdensityplot from the plots package represents such a matrix as a grid with a level of
gray or color corresponding to the number in each cell. Thus, the graphics that the following command
produces represents the minimum number, 0, as black, the maximum number, 2, as white, and the
intermediate number, 1, is a shade of gray:

> plots[listdensityplot] (mat02);

Comparison of the array form of mat02 and the picture reveals that the rows of numbers, read from left to
right, correspond to the columns of squares, viewed from bottom to top. Thus, the display for the first row
of the matrix occurs on the left, while the third row corresponds to the right column of the picture. For
simulations, we often do not care about such ordering. However, if visualization of the data is aided by
displaying the grid as the numbers appear in the matrix, the order of the rows can be reversed with the
Maple command Reverse and the result transposed with Transpose . Both these functions are in the

package ListTools .

In general, the following call in long form reverses the order of the elements in an expression, such as a
list:

 ListTools[Reverse](expr)

The following segment returns the reverse of the list [1, 2, 3]:

> ListTools[Reverse] ([1,2,3]);

Reversal occurs at the top level. Thus, the reverse of a list of lists, [l1, l2, ..., ln], returns the list [ln, ..., l2,
l1] without reversing the elements in the list, l1, l2, ..., and ln. Thus, the following reverse of [[1,2,3], [4,
5]] swaps the two elements, [1,2,3] and [4, 5], without reversing either:

> ListTools[Reverse]([[1, 2, 3], [4, 5]]);

Applying listdensityplot to the transpose of the reversed list, we display the graphics corresponding to the
rows from top to bottom. With both functions in the ListTools , we include the package before calling the
functions, as follows:

> with(ListTools):
plots[listdensityplot](
	

Transpose(Reverse(mat02)));

Several options are useful with listdensityplot . Because the axes usually do not provide useful information
in the visualization of a simulation, we eliminate them with the option-value pair axes = none .

In simulations, we usually have a sequence of grids, each representing the result at one time step.
However, a particular matrix corresponding to a grid may not contain all the possible values. For example,
in simulating the spread of fire with 2 representing a burning cell, at a particular step, no fire might be
burning so that 2 would not appear in the matrix. Maple determines the level of gray corresponding to each
number depending on the range of numbers present. When performing animations of a sequence of grids,
we want the same range of numbers applicable for each grid. Thus, we designate the range for Maple to
use in each listdensityplot with the option-value pair range = n..m .

With the option-value pair colorstyle = RGB , we indicate that listdensityplot should employ colors instead
of gray levels. For the above example, the following command indicates the graphics should employ
colors, range = 0..2, and no axes:

> plots[listdensityplot](mat02,
	

axes = none, range = 0..2);

Quick Review Question 3
a. Generate a 10-by-10 array of random floating point numbers between 0 and 1, and visualize the
array.

b. Generate a sequence of five 10-by-10 arrays of random floating point numbers between 0 and 1.
Animate visualizations of the arrays. Use listdensityplot.

c. Generate a 10-by-10 array of floating point numbers varying from 0 to 0.9 in steps of 0.1 on each
row. Display the corresponding graphics using Transpose and Reverse so that the display has a
column of black on the left and a column of white on the right.

d. Smooth out the display with a 100-by-100 array and appropriately smaller step sizes.

The function listdensityplot is convenient for production of a "quick-and-dirty" visualization of a
simulation. However, with this function, Maple employs default designations for the gray levels or colors.
Frequently, an effective visualization employs colors that suggest meanings, such as red for fire and green
for vegetation. To enable us to designate the color correspondence, we present an alternative approach
using polygons. We start by defining a list with the coordinates in counterclockwise order of a unit square,
aSquare, as follows:

> aSquare :=[[0, 0], [0, 1],[1, 1],[1, 0]]:

The function polygonplot from the plots package can display this polygon using the usual plots options,
such as color in the following long form of the command:

> plots[polygonplot] (aSquare,
	

 color = red, axes = none);

The function translate from the plottools package translates a plot structure by designated amounts in the
horizontal and vertical directions. The following segment defines a graphics, redSquare , for a red square
and a graphics, greenSquare , for a green square. We display the squares together with greenSquare
translated 2 units in the horizontal direction and 1 unit in the vertical direction. So that the squares continue
to appear as squares and not elongated rectangles, we employ the scaling option with value
CONSTRAINED .

> redSquare := plots[polygonplot](aSquare,
	

 color = red, axes = none):
greenSquare := plots[polygonplot](aSquare,
	

 color = green, axes = none):
plots[display]([redSquare,
	

plottools[translate](greenSquare, 2, 1)],
	

 scaling = CONSTRAINED);

For visualizing an array, for each number, we construct a square with an appropriate color and translate this
square into position. We illustrate the process with the following 4-by-3 array:

> matEx:=[[0, 0, 1], [0, 1, 0], [1, 0, 0], [1, 1, 0]]:

To specify the coloring, we define a function matchColor with parameters for an array, mat, and indices
into that array, i and j. If mati, j is 0, matchColor returns yellow; and if the array element is 1, the function
returns forest green, which has RGB values of 0.1, 0.75, and 0.2, respectively.

> eval(matEx, [0 = yellow,
	

 1 = COLOR(RGB, 0.1, 0.75, 0.2)]);

> unassign(matchColor):
matchColor := (mat, i, j)->eval(mat[i, j],
	

 [0 = yellow,
	

 1 = COLOR(RGB, 0.1, 0.75, 0.2)]):

For each row i and column j, we construct a graphics for a square using polygonplot with matchColor to
designate the color corresponding to the array value at that location. Then, we translate the square into
position by again using i and j. We show the resulting rectangular grid in yellow and forest green with
display.

> plotGrid := seq(seq(
	

 plottools[translate](
	

 	

 plots[polygonplot](aSquare,
	

 	

 	

 axes = none, scaling = CONSTRAINED,
 	

 	

 	

color = matchColor(matEx, i, j)),
	

 	

j, i),

	

j = 1..3), i = 1..4):

> plots[display](plotGrid);

If desirable, we can reverse the rows of the array to produce a graphics where the rows from top to bottom
correspond to the array rows from top to bottom.

Quick Review Question 4
a. Generate a 10-by-10 array of random integers in {0, 1, 2}, and visualize the array with 0 as pink,
1 as orange, and 2 as yellow. Use polygonplot .

b. Generate a sequence of five 10-by-10 arrays of random integers in {0, 1, 2} . Animate
visualizations of the arrays with the color designations as in Part a. Use polygonplot .

c. Generate a 10-by-10 array of floating point numbers varying from 0 to 0.9 in steps of 0.1 on each
row. Display the corresponding graphics with corresponding increases in the amounts of red.
Have zero green and blue components.

d. Smooth out the display with a 100-by-100 array and appropriately smaller step sizes.

Types
The type of a variable indicates the kind of data it can store. Some important types are as follows:

 integer - integer data, or data in the set {..., -3, -2, -1, 0, 1, 2, 3, ...}
 numeric - includes integer and floating point data. such as -38.2
 character - single symbol in quotation marks, such as "b" or "+"
 list - list data, such as [1,5,3]
 anything - any valid expression except a sequence
 positive - positive number
 negative - negative number
 nonnegative - numbers greater than or equal to zero

Function definitions and rules, which we cover shortly, sometimes need to specify the types of parameters.
To indicate that a parameter, such as L, is of a certain type, such as list, we enter the type after the parameter
name and double colons, such as in the function, rest, below. For an empty list argument, the function
returns the argument; and for a nonempty list, the function returns the sublist with the first element omitted.

> rest := proc(L ::list)
 `if`(L = [], [], L[2..-1]);
end proc:

The following calls illustrate that we can apply the function to a list argument but not to a number.

> rest([]);

> rest([1,5,7,9,2]);

> rest(2);

Quick Review Question 5 Define a function, h, with one parameter, x, that only accepts integer
arguments and returns x 2. Illustrate that the function returns the proper value for integer
arguments 3, -3, and 0 but has no definition for arguments of other types, such as 0.3 and 1/2.

Matching Patterns for Definitions

Frequently, a Maple function that drives a simulation has different definitions for various configurations of
arguments. To write a Maple program with several branches, we can employ nested calls to if. However,
using several rules for a procedure, we can make the program easier to correct, modify, and understand.
We can use the functions define and definemore for rule definitions and undefine to remove definitions
associated with a operator name. In the following general form of define, we associate one or more rules
with the operator oper:

 define(oper, rule1, rule2, ...rulen)

For example, for the operator exFnc below, when the argument is 5, the function returns 2. The second
rule returns 3 times a numeric argument. The graph of this function is a straight line with a hole at x = 5
and the point (5, 2). As the calls to exFnc indicate, when we use any argument other than 5, the second
definition applies; but with an argument of 5, Maple employs the first definition with its match of the
pattern 5.

> undefine(exFnc);

> define(exFnc,
 exFnc(5) = 2, # rule A
 exFnc(x::numeric) = 3*x # rule B
);

> exFnc(4);

> exFnc(5);

When a function has alternate definitions, Maple employs the first definition in which the arguments match
the pattern of the parameters. For example, in the definition of exFnc2 below, we reverse rules A and B
from the above definition of exFnc. Because 5 matches the pattern x::numeric , Maple uses the first rule to
evaluate exFnc2(5) as 3*5, or 15. Thus, the second rule never applies.

> undefine(exFnc2);

> define(exFnc2,
 exFnc2(x::numeric) = 3*x , # rule B
 exFnc2(5) = 2 # rule A NEVER APPLIED
);

> exFnc2(5);

Sometimes in simulations, we have a number of situations to consider. Grouping rules into smaller units
can make them more readable. We can use define for the first grouping and can employ definemore for
subsequent groups. Again, the rules are applied in the order in which they appear.

> undefine(exFnc);

> define(exFnc,
 exFnc(5) = 2, # rule A
 exFnc(6) = 2 # rule C
);

> definemore(exFnc,
 exFnc(x::numeric) = 3*x # rule B
);

> exFnc(5);

> exFnc(6);

> exFnc(4);

As another example, in one kind of random walk, depending on the value of a random integer, the next
point in a path might be the current site or one step in any north, east, south, or west direction. With r
storing a random number, the nested if calls below return the next point in a random walk. This point is an
ordered pair with no change or an increment or decrement by 1 of x or y, based on the value of r.

> rand0to3 := rand(0..3):
r := rand0to3();
x := 5:
y := 5:

> `if`(r = 0, [x + 1, y], # east
 `if`(r = 1, [x - 1, y], # west
 `if`(r = 2, [x, y + 1], # north
 `if`(r = 3, [x, y - 1], # south
 [x, y])))); # site

The following rules for dirFnc generate the same logic. Subsequent calls to the function illustrate its
action. Depending on the value of the first argument, the appropriate rule is invoked.

> undefine(dirFnc):
define(dirFnc,
 dirFnc(0, x::numeric, y::numeric) = [x + 1, y],
 # east
 dirFnc(1, x::numeric, y::numeric) = [x - 1, y],
 # west
 dirFnc(2, x::numeric, y::numeric) = [x, y + 1],
 # north
 dirFnc(3, x::numeric, y::numeric) = [x, y - 1],
 # south
 dirFnc(r::numeric, x::numeric, y::numeric)
 = [x, y] # site
);

With the first argument being 2 in the following call to dirFnc, the "north" definition applies to return the
point to the north of [17, 35]:

> dirFnc(2, 17, 35);

The following call to dirFnc with a first argument of 5 invokes the most general definition to return the site
designated by the second and third arguments:

> dirFnc(5, 17, 35);

Without a type designation, such as numeric and anything , Maple would attempt to match the parameter
symbol. For example, consider the following rule:

> define(matchx,
 matchx(x) = x^2
);

In the following calls to matchx, we see that the rule only applies when the argument is exactly the symbol
x.

> matchx(x);

> matchx(3);

> matchx(y);

The following definitions of f return the absolute value of nonzero arguments. Thus, f returns any positive
argument. However, if an argument is less than zero, f returns the negative of the argument. As the last
call to f reveals, the function is undefined at 0.

> undefine(f):
define(f,
 f(x::positive) = x,
 f(x::negative) = -x
);

> f(3);

> f(-3);

> f(0);

Quick Review Question 6 Define g using rules with alterative definitions, not if. The function has
three parameters, n, a, and b. With a first argument of 1, if a or b is 3, the function returns a + 1.
With a first argument of 2, if a or b is 4, the function returns b + 1. Otherwise, the function
returns a + b. Test the function thoroughly.

