11.3 Maple QRQ

9

11.3 Movement of Ants

Maple Quick Review Questions

Introduction to Computational Science: Modeling and Simulation for the Sciences

Angela B. Shiflet and George W. Shiflet

Wofford College

© 2006 by Princeton University Press

This file contains system-dependent Quick Review Questions and answers in Maple for Module 11.3 on "Movement of Ants." Complete all code development in Maple.

Grid Initialization

Quick Review Question 1
This question refers to the initialization of the grid for ant movement. Suppose we establish constants EMPTY, NORTH, EAST, SOUTH, and WEST as representative characters, as follows:

EMPTY:= "T":

NORTH :="N":

EAST := "E":

SOUTH := "S":

WEST := "W":

a.
Write a statement to assign to EMPTY the character "T" without displaying the result. Similar statements give character values "N", "E", "S", and "W" to NORTH, EAST, SOUTH, and WEST, respectively.

b.
Write a function call to return a random integer between 1 and 4.

c.
We define a list, dir, of directions, as follows:

dir := [NORTH, EAST, SOUTH, WEST]:

Suppose r is an integer between 1 and 4. Give the expression to return the direction from dir with index r.

d.
Complete the code to assign to initialGrid an n-by-n array of ordered pairs. The first member of each ordered pair is zero. With a probability of probAnt, the cell contains an ant that faces in a random direction. Otherwise, the cell does not contain an ant. Assume that rand0to1 is a function that returns a random floating point number between 0 and 1.

initialGrid:=

[

([

(

 [

, `if`(

 <

,

 dir[rand(1..4)()],

)],

 j = 1..n)], i = 1..n)]:

e.
Complete the loop to generate a chemical trail with no ants on the middle row of the grid initialGrid. The maximum amount of chemical, 50, occurs in column n, and for column j the amount of chemical is a fraction, j / n, expressed as an integer, of the maximum 50. For example, if j is 10 and n is 17, then the amount of chemical is the integer 29 because (50)(10)/17 = 29.41.

j from 1 to n do

grid[[IntegerPart[n/2] + 1,

] := [

,

]

end do:

Sensing

Quick Review Question 2
With integer parameter a representing the amount of chemical, complete the code for the first sense rule that an empty cell does not sense.
define(sense,

 sense[

, b::list, c::list, d::list, e::list) =

);

Quick Review Question 3
This question refers to the second sense rule that an ant turns at random in the direction of one of the neighboring cells with the greatest amount of chemical. We begin by defining a function, senseMax, that returns the direction, NORTH, EAST, SOUTH, WEST, of the maximum of four arguments, respectively. If more than one argument is equal to the maximum, a direction is picked at random. Assume the function definition begins as follows:

senseMax := proc(n, e, s, w)

 local mx, mxDirList, lng;

…

a.
Complete the statement to assign the maximum level of chemical in neighboring cells to mx.

mx :=

:

b.
Complete the statement to assign to mxDirList a list of directions (NORTH, EAST, SOUTH, WEST) where the maximum level, mx, occurs. If a parameter is not equal to mx, the component in the resulting list should be NULL, indicating no value.

mxDirList := [

 (

, NORTH, NULL),

 (

, EAST, NULL),

 (

, SOUTH, NULL),

 (

, WEST, NULL)]:

c.
Complete the statement to assign to lng the number of elements in mxDirList.

lng :=

(mxDirList):

d.
Complete the statement to return a random position from 1 and lng, inclusively, in mxDirList.

mxDirList[

];

e.
Complete the additional rule for sense (the first rule is in Quick Review Question 2), where each of the five parameters is a list consisting of an integer and a character parameter. The rule uses delayed evaluation of senseMax.

definemore(sense,

 sense([a

, aa

],

 [b

, nn

],

 [e

, ee

],

 [s

, ss

],

 [w

, ww

]) =

 [

,

(b, e, s, w)]

);

Walking without Concern for Collision

Quick Review Question 4
Complete the definition of the first walk rule: For a cell that remains empty, the amount of chemical decrements by one but does not fall below 0. Because Maple applies the first rule that matches, as we see shortly, this rule is not the first we define.

(walk,

 walk([a

,

], N::list, E::list,

 S::list, W::list, NE::list, SE::list,

 SW::list, NW::list, Nn::list, Ee::list,

 Ss::list, Ww::list) = [

,

]

);

Quick Review Question 5
Complete the definition of one form of the second walk bullet: If an ant wants to go north and the cell to the north is empty, the ant leaves the current cell and the amount of chemical at that site increments by one. Similar rules apply to the east, south, and west directions.
definemore(walk,

 walk([a

,

], [b

,

],

 E::list, S::list, W::list,

 NE::list, SE::list, SW::list, NW::list,

 Nn::list, Ee::list,

 Ss::list, Ww::list) = [

,

],

…

Quick Review Question 6
Complete the definition of the third walk rule: If an ant stays in a cell, the amount of chemical remains the same.
definemore(walk,

 walk([a

, c

], N::list,

 E::list, S::list, W::list,

 NE::list, SE::list, SW::list, NW::list,

 Nn::list, Ee::list,

 Ss::list, Ww::list) = [

,

]

);

Quick Review Question 7

a.
Complete the definition of one form of the fourth walk bullet: If an ant moves to a cell, the cell continues to have its same amount of chemical. In this case, the current site is initially empty and the cell to the north contains an ant that is facing south. Similar rules apply to ants in the east, south, and west directions facing the current site.
definemore(walk,

 walk([a::integer,

], [b::integer,

],

 E::list, S::list, W::list,

 NE::list, SE::list, SW::list, NW::list,

 Nn::list, Ee::list,

 Ss::list, Ww::list) = [

,

],

 …

b.
The pattern of arguments for this rule matches a rule for which previous Quick Review Question?

Walking with Concern for Collision

Quick Review Question 8

a.
Complete the definition of the walk rule for the situation in Figure 11.3.1 in which a collision should be avoided for the current ant that faces an empty cell to the north and a northeast ant that faces west. Because this rule is more specific than that of some previous Quick Review Questions, we define it first.

(walk,

 walk([a::integer,

], [b::integer,

],

 E::list, S::list, W::list,

 [ne::integer,

], SE::list, SW::list,

 NW::list, Nn::list,

 Ee::list, Ss::list, Ww::list) =

 [

,

],

…

b.
Give the number of similar such rules.

c.
The pattern of arguments for this rule matches a rule for which previous Quick Review Questions?

Quick Review Question 9

a.
Complete the definition of the walk rule for the situation in Figure 11.3.1 in which a collision should be avoided where the current site is empty but ants to the north and east both want to move into the site. In this situation, if the amount of chemical at the site is positive, it decrements by 1.

definemore(walk,

 walk([a::integer,

], [b::integer,

],

 [e::integer,

], S::list, W::list,

 NE::list, SE::list, SW::list, NW::list,

 Nn::list, Ee::list, Ss::list, Ww::list)=

 [max(a - 1, 0),

],

…

b.
Give the number of similar such rules.

c.
The pattern of arguments for this rule matches a rule for which previous Quick Review Questions?

Visualizing the Simulation

Quick Review Question 10
Suppose graphList is a list of square grids representing frames of the simulation at consecutive time steps; and maxChem is the maximum amount of chemical in any cell of any grid in graphList. The function showGraphs uses a function matchColor to associate the value of a cell with a color. The definition of the latter begins as follows:

matchColor := proc(mat, i, j)

 local siteColorAmt:

…

a.
Write a statement to indicate that variable maxChem is not local to matchColor.

b.
Complete the statement to assign to siteColorAmt the amount of chemical component, the second coordinate of the ordered pair mat[i, j], scaled to be between 0.5 and 1.0, as described in this section.

siteColorAmt :=

 - (

] * 0.5)/

:

c.
Complete the if statement to return an RGB color designation for a cell. If the cell is empty, return a shade of gray (equal amounts of red, green, and blue) based on siteColorAmt. Otherwise, return a shade of red based on siteColorAmt.

if (mat[i, j,

] =

) then

 (

,

,

,

);

else

 (

,

,

,

);

end if;

The complete function is as follows:

matchColor := proc(mat, i, j)

 local siteColorAmt:

 global maxChem:

 siteColorAmt := 1.0 - (mat[i, j, 1] * 0.5)/maxChem:

 if (mat[i, j, 2] = EMPTY) then

 COLOR(RGB, siteColorAmt, siteColorAmt, siteColorAmt);

 else

 COLOR(RGB, siteColorAmt, 0, 0);

 end if;

end proc:

d.
The definition showGraphs to visualize the grids in graphList with maximum chemical amount of maxChem begins as follows:

showGraphs := proc(graphList, maxChem)

 local k, g, aSquare, plotGrid, plotList, n;

…

Write a segment to indicate that maxAmtChem is not local and to give it the value of parameter maxChem.

e.
Write a statement to assign to g the kth grid, or square matrix, in graphList.

f.
Write a statement to assign to aSquare a list containing the vertices of a unit square in the first quadrant with a vertex at the origin. Start with the origin and list the vertices in counterclockwise order.

g.
Complete the statement to assign to plotGrid a sequence of squares, colored as designated by matchColor and translated into the rows and columns corresponding to the grid g.

plotGrid :=

(

 (

 plottools[

](

 plots[

](aSquare,

 axes = none,

 scaling = CONSTRAINED,

 color =

),

,

),

 j = 1..n), i = 1..n):

h.
Complete the statement to append to plotList a display of all the squares in the sequence from Part g

plotList := [

(plotList),

 [

](plotGrid)]:

i.
Complete the statement to generate an animation of the elements in plotList.

 [

](plotList,

 =

);

Answers to Quick Review Questions

1.
a.
EMPTY := "T":

The assignments for the other directions are as follows:

 NORTH := "N":

 EAST := "E":

 SOUTH := "S":

 WEST := "W":

b.
rand(1..4)()
c.
dir[r]

Thus, the following expression returns a random direction, N, E, S, or W:

dir[rand(1..4)()]

d.
initialGrid :=
 [seq([seq([0, `if`(rand0to1() < probAnt,

 dir[rand(1..4)()], EMPTY)],

 j = 1..n)], i = 1..n)]:

e.
for j from 1 to n do

 initialGrid[trunc(n/2) + 1, j] :=

 [trunc(maxChem*j/n), EMPTY]

end do:

2.
define(sense,

sense([a::integer, EMPTY], b::list, c::list, d::list, e::list) =

 [a, EMPTY]);

3.
a.
mx := max(n, e, s, w):
b.
mxDirList := [`if`(n = mx, NORTH, NULL),

 `if`(e = mx, EAST, NULL),

 `if`(s = mx, SOUTH, NULL),

 `if`(w = mx, WEST, NULL):]:

c.
lng = nops(mxDirList):
d.
mxDirList[rand(1..lng)()];

The complete definition of is as follows:

senseMax := proc(n, e, s, w)

 local mx, mxDirList, lng;

 mx := max(n, e, s, w):

 mxDirList := [`if`(n = mx, NORTH, NULL),

 `if`(e = mx, EAST, NULL),

 `if`(s = mx, SOUTH, NULL),

 `if`(w = mx, WEST, NULL)]:

 lng := nops(mxDirList):

 mxDirList[rand(1..lng)()];

end proc:

e.
definemore(sense,

 sense([a::integer, aa::character],

 [b::integer, nn::character],

 [e::integer, ee::character],

 [s::integer, ss::character],

 [w::integer, ww::character]) =

 [a, 'senseMax'(b, e, s, w)]

);

4.
definemore(walk,

 walk([a::integer, EMPTY], N::list, E::list,

 S::list, W::list, NE::list, SE::list,

 SW::list, NW::list, Nn::list, Ee::list,

 Ss::list, Ww::list) = [max(a - 1, 0), EMPTY]

);

5.
definemore(walk,

walk([a::integer, NORTH], [b::integer, EMPTY],

 E::list, S::list, W::list,

 NE::list, SE::list, SW::list, NW::list,

 Nn::list, Ee::list,

 Ss::list, Ww::list) = [`if`(a>0, a+1, 0), EMPTY],

…

6.
definemore(walk,

walk([a::integer, c::character], N::list,

 E::list, S::list, W::list,

 NE::list, SE::list, SW::list, NW::list,

 Nn::list, Ee::list,

 Ss::list, Ww::list) = [a, c]

);

7.
a.
definemore(walk,

 walk([a::integer, EMPTY], [b::integer, SOUTH],

 E::list, S::list, W::list,

 NE::list, SE::list, SW::list, NW::list,

 Nn::list, Ee::list,

 Ss::list, Ww::list) = [a, SOUTH],

b.
Quick Review Question 4. Thus, for the rule of the current, more specific situation ever to apply, its definition must appear before the rule of Quick Review Question 4.

8.
a.
define(walk,

 walk([a::integer, NORTH], [b::integer, EMPTY],

 E::list, S::list, W::list,

 [ne::integer, WEST], SE::list, SW::list,

 NW::list, Nn::list,

 Ee::list, Ss::list, Ww::list) =

 [a, NORTH],

 …

b.
11

c.
Quick Review Questions 5 and 6. Thus, for the rule of the current, more specific situation ever to apply, its definition must appear before the rules of Quick Review Questions 5 and 6.

9.
a.
definemore(walk,

 walk([a::integer, EMPTY], [b::integer, SOUTH],

 [e::integer,WEST], S::list, W::list,

 NE::list, SE::list, SW::list, NW::list,

 Nn::list, Ee::list, Ss::list, Ww::list)=

 [max(a - 1, 0), EMPTY],

 …

b.
5

c.
Quick Review Questions 4, 6, and 7. Thus, for the rule of the current, more specific situation ever to apply, its definition must appear before the rules of Quick Review Questions 4, 6, and 7.

10.
a.
global maxChem:
b.
siteColorAmt := 1.0 - (mat[i, j, 1] * 0.5)/maxChem:

c.
if (mat[i, j, 2] = EMPTY) then

 COLOR(RGB, siteColorAmt, siteColorAmt, siteColorAmt);

else

 COLOR(RGB, siteColorAmt, 0, 0);

end if;

d.
global maxAmtChem:
maxAmtChem := maxChem:

e.
global maxAmtChem:
maxAmtChem := maxChem:

f.
g := graphList[k]:
g.
aSquare := [[0, 0], [0, 1], [1, 1], [1, 0]]:

g.
plotGrid := seq(seq(
 plottools[translate](

 plots[polygonplot](aSquare,

 axes = none,

 scaling = CONSTRAINED,

 color = matchColor(g, i, j)),

 j, i),

 j = 1..n), i = 1..n):

h.
plotList := [op(plotList), plots[display](plotGrid)]:
i.
plots[display](plotList, insequence = true);
