
1

5.1 Computational Toolbox—Tools of the Trade: Maple Tutorial 2

File: MapleTutorial2.mw

Introduction to Computational Science: Modeling and Simulation for the Sciences
Angela B. Shiflet and George W. Shiflet

Wofford College
© 2006 by Princeton University Press

Introduction
The prerequisite to this tutorial is " Maple Tutorial 1." Tutorial 2 prepares you to use Maple to complete
projects for this and subsequent chapters. The tutorial introduces the following functions and concepts:
lists, plotting points, plotting lines connecting points, comments, and appending to lists. The module also
gives examples along with Quick Review Questions for you to do with Maple. Execute all input cells to
view the results of the examples.

Lists
Many Maple applications involve lists, and a number of built-in functions perform operations on lists.
Brackets, [], enclose the values in a list, such as follows:

> numList := [13, 36, 92];

We also employ a list to store an ordered pair, such as the following representation of the point (-3, 46):

> orderedPair := [-3, 46];

Quick Review Question 1 Do anything that is asked of you in cells that look like this one, marked
as a Quick Review Question in boldface. Because such cells are text cells and not input cells, do not
type in these cells. Instead, if a greater than prompt does not appear in an otherwise empty
execution group below, from the Insert menu, Execution Group submenu, select After Cursor .
Alternatively, use the shortcut indicated on that menu or click the icon ([>) to "Insert executable
Maple input after the current paragraph."

For this question, assign to ptLst a list representing the following ordered pairs (points): (-3, 6), (5,
2), and (1, 12).

The elements of a list have a numeric order starting with 1, and we can refer to a particular element by
using the name of the list and brackets, [], surrounding that number. For example, the second element of
numList above is as follows:

> numList[2];

Besides using a number, such as 2, we can employ a variable, such as i, that has a value, so that numList[i]
refers to the i-th element of the list. Consequently, a for loop can process the elements of a list individually
by having the varying loop index specify the list element.

Quick Review Question 2 Using print and a for loop, print on separate lines the points of ptLst
from Quick Review Question 1.

Frequently, a list occurs within a list, such as the following list that represents a matrix with two rows, each
in brackets, and four columns:

> mat := [[45, 99, 203, -29], [775, 31, -582, 62]];

With mat having two elements, the rows, we reference the first row, [45, 99, 203, -29], as follows:

2
> mat[1];

We obtain first row's third column element using a row and column values in brackets, as follows:

> mat[1][3];

Alternatively, we employ the following notation that separates the indices with a comma:

> mat[1, 3];

Quick Review Question 3 Write commands using ptLst and brackets to return the following parts
of ptLst from Quick Review Question 1:

a. The third point, (1, 12)

b. The first coordinate of the second point, 5. Use two pairs of brackets.

c. The first coordinate of the second point, 5. Use one pair of brackets.

d. The second coordinate of the first point, 6. Use two pairs of brackets.

e. The second coordinate of the first point, 6. Use one pair of brackets.

Graphing Points
To plot points in a list, we use listplot, which the package plots defines. Maple contains a number of useful
packages that the software loads only as requested. Using the with function, we load a needed package
once in a worksheet. With the plots package loaded as the following command accomplishes, we can call
the listplot function:

> with(plots):

In the example below, two statements appear in one execution group, the assignment of a list to pts and
listplot; and output for each command occurs after the input cell. After indicating the function(s) or data to
graph, we list options and their values in the form option = value in calls to plotting functions, such as plot
and listplot. The listplot command below contains two such option-value pairs. The function displays the
points with the appropriate axes labels by employing the option labels , which is also available for plot. The
style option with value point indicates that the display should contain distinct points instead of lines
connecting the points. The appearance of a "point" depends on the output device and might be, for
example, a circle, diamond, or cross.

> pts := [[-3, 2], [2, 2], [-1, -1], [4, 3], [0, 0]];
listplot(pts, labels = [" x ", " y "], style = point);

We can still use listplot without loading the entire package by using the package name with the function
name in brackets, such as plots[listplot] in the following command:

> plots[listplot](pts, labels = [" x ", " y "], style = point);

Another option that is important to maintain consistency when generating a number of plots for an
animation is view, which designates the viewing area for the graph. The option-value pair view = [
xmin..xmax , ymin..ymax] indicates that for the display, the minimum and maximum values in the
horizontal direction are xmin and xmax, respectively; and those for the vertical direction are ymin and ymax,
respectively. The following command results in a plot from -3 to 2 in the x direction and from -1 to 2 in the
y direction, causing the omission of one point:

> plots[listplot](pts, labels = [" x ", " y "],
	

 style = point,
	

view = [-3..2, -1..2]);

Quick Review Question 4 Graph the points in list ptLst from Quick Review Question 1. Have

3
labeled axes.

In the command below, we make the points bigger and assign the graph to a variable, lp, for later reuse. To
have larger points, we employ the option symbolsize with value (here, 15) being the number of pixels
(dots) across. The default symbol size is 10.

> listplot(pts,
 labels = [" x ", " y "] , style = point,
 symbolsize = 15);

Quick Review Question 5 Copy to a new execution group the answer of Quick Review Question 4
to plot the list of points stored in variable ptLst. Adjust the command to have the points appear
larger.

Lines Connecting Points
Sometimes, it is helpful to visualize the path of an entity, such as an animal or a molecule, whose
movement we are simulating. To generate the path, we employ the default value for the option style or
explicitly indicate style = line . The subsequent graph displays line segments joining pairs of adjacent
points.

For example, suppose [-1, 0, -1, 0, 1, 2, 3, 2, 1, 0] is a list (ylst) of y values, where each element is
randomly one more or less than the previous element. Considering each y value to occur at sequential ticks
of the clock, we can draw a line graph to display the trend of the y values over time. Just plotting ylst
causes the first coordinates of the points to be 1, 2, ..., 10 and the corresponding second coordinates to be
from ylst. The segment to display the trend of y over time follows:

> ylst := [-1,0,-1,0,1,2,3,2,1,0]:
listplot(ylst, labels = ["t", "y"], style = line);

Quick Review Question 6 Plot the list of points stored in variable ptLst from Quick Review
Question 1 of the "Lists" section. Label the axes, and connect the points with line segments.

Comments
Any program, regardless of the language, should have ample comments to explain the code. It is
amazingly easy forget what was done only a few minutes earlier. It takes far less time to enter the
comments as we type the program than to figure out the code later. A descriptive software engineering
phrase is "Write once, read many times."

We have been using Maple worksheet execution groups with styles, such as Text, to record comments.
However, for longer segments of code, internal comments are also helpful. In Maple, comments appear
after #, and the computer ignores text starting with a pound sign for the rest of the line. Examples of
comments follow:

> # A comment can appear on a line by itself; and if it
continues to the next line, we must use another pound sign.
Also, a can document code on a line, such as follows:
lst := []: # initialize list to empty

Quick Review Question 7 Write a statement to assign 80 to the variable v, and in a comment on the
same line indicate that the variable represents "velocity in km/hr."

Appending to a List
In simulations with Maple, we frequently build a list, one element at a time. To do so, we employ list
notation with brackets and the Maple function op, which returns the operands or sequence of elements in a

4
list. In the following segment, we assign a list to the variable lst and then display the sequence of elements
using op:

> lst := [1, 2, 3, 4];
op(lst);

To obtain an appended list, we incorporate the sequence of elements from the original list, op(expr), and the
additional element, elem, in brackets, as follows:

 [op(expr), elem]

The segment below returns the value of the list lst with a new element, 5, on the end. As the output of lst
on the last line indicates, however, the operation returns the appended list but does not change the original
value of lst.

> [op(lst),5];
lst;

To have lst be the appended list, we assign the appended list to lst, as follows:

> lst := [op(lst),5] ;
lst;

The appended element can be a list itself. In the following example, pts originally represents a list of two
points. After execution, pts contains a third point, the origin.

> pts := [[1, 5], [-2, 7]];
pts := [op(pts), [0, 0]] ;

In a programming language, such as C, C++, or Java, when using a loop to count, we must initialize the
counter to be zero before the loop. Similarly, we must initialize a list before performing the append
operation. When building a list from scratch, that initial value is usually an empty list, [] . The segment
below defines a function g(x) =3 x using the Expression palette or sqrt(x) for the square root of x and
then stores g(i) for the positive integers i less than 10 in the list gLst, which is originally empty. Finally,
we have Maple return the value of gLst.

> g := x-> 3*sqrt(x):
gLst := []:
for i from 1 to 10 do
 gLst := [op(gLst), g(i)] ;
end do:
gLst;

Quick Review Question 8 Using the comments in the cell below as a guide, write a Maple segment
to generate a list, lst, of 30 points. Initialize the list to be empty and y to be 1. Inside the body of a
for loop with an integer index i that goes from 0 through 29, make x be 0.25 times i, make y be 1.2
times its previous value, and append the ordered pair of values to the list. After creation of the list
of points, plot the points with line segments joining adjacent points and labeled axes.

> # initialize list lst to be empty
initialize y to be 1
for i going from 0 through 29 in a loop do the following:
assign to x the expression 0.25 times i
assign to y the expression 1.2 times previous value of y
assign to lst the list with ordered pair of x and y appended

5
plot the points

