
1

9.1 Computational Toolbox—Tools of the Trade: Maple Tutorial 4

File: MapleTutorial4.mw

Introduction to Computational Science: Modeling and Simulation for the Sciences
Angela B. Shiflet and George W. Shiflet

Wofford College
© 2006 by Princeton University Press

Introduction
The prerequisites to this tutorial are Maple Tutorials 1-3. Tutorial 4 prepares you to use Maple for material
in this and subsequent chapters. The tutorial introduces the following functions and concepts: random
numbers, modulus, if-statement and operand, counting the number of occurrences of a pattern, flattening,
loading a package, mean, standard deviation, histograms, defining packages and procedures, truncation,
and variable number of parameters.

Besides being a system with powerful commands, Maple is a programming language. The first tutorial
covered programming with the loop construct for. In this tutorial, we consider a command for another
programming feature, the selection construct. Maple is easily extensible, and this tutorial also discusses
how to load and use packages that extend the language.

Random Numbers
Random numbers are essential for computer simulations of real-life events, such as weather or nuclear
reactions. To pick the next weather or nuclear event, the computer generates a sequence of numbers, called
random numbers or pseudorandom numbers . As we discuss in Module 9.2 on "Simulations," an
algorithm actually produces the numbers; so they are not really random, but they appear to be random. A
uniform random number generator produces numbers in a uniform distribution with each number
having an equal likelihood of being anywhere within a specified range. For example, suppose we wish to
generate a sequence of uniformly distributed, four-digit random integers. The algorithm used to
accomplish this should, in the long run, produce approximately as many numbers between, say, 1000 and
2000 as it does between 8000 and 9000.

Definition Pseudorandom numbers (also called random numbers) are a sequence of numbers that an
algorithm produces but which appear to be generated randomly. The sequence of random numbers is
uniformly distributed if each random number has an equal likelihood of being anywhere within a
specified range.

Maple provides the random number generator rand. Each call to rand() returns a uniformly distributed
pseudorandom nonnegative integer. Execute the following cell several times to observe the generation of
different random numbers:

> rand();

An optional argument specifies the range for the random numbers. If the argument is a positive integer,
bound, such as in the following form, the range is from 0 to bound - 1, and rand returns a procedure
(function) to generate the random numbers:

 rand(bound)

We assign the call of rand to a variable, such as randomRange , and then invoke the procedure with this
name, such as randomRange ().

2

For example, suppose we need a procedure to generate a random integer between 0 and 9; that is, the
returned value of the procedure is in the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. The value might represent a sensor
value for a simulation. To obtain such a procedure, we call rand with argument 10, which is one more than
the maximum value, 9. We assign the call to a variable, sensorProc , as below. With a semicolon
terminating the statement, we observe that rand(10) returns a procedure to generate a random value in 0..9,
not a value itself.

> sensorProc := rand (10);

To obtain a random number in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, we call the procedure using the name
sensorProc along with empty parentheses because sensorProc is a function. Execute the following
command several times and observe the returned values:

> sensorProc();

To create a list of 20 such random integers, we place in brackets a call to the sequence command with
argument sensorProc(), as follows:

> [seq(sensorProc(), i = 1..20)];

Quick Review Question 1 Do anything that is asked of you in cells that look like this one, marked
as a Quick Review Question in boldface. Because such cells are text cells and not input cells, do not
type in these cells. Instead, if a greater than prompt (>) does not appear in an otherwise empty
execution group below, from the Insert menu, Execution Group submenu, select After Cursor .
Alternatively, use the shortcut indicated on that menu or click the icon ([>) to "Insert executable
Maple input after the current paragraph."

a. Assign to variable headsOrTails a procedure that generates a random 0 or 1, indicating heads or
tails, respectively.
b. Using headsOrTails and seq, generate a 3-by-3 matrix (list of 3 lists with 3 numbers each) of
random 0s and 1s, and store the answer in mat.

c. Using eval, change each occurrence of 0 in headsOrTails to yellow and each occurrence of 1 to the
RGB color with values 0.1, 0.75, and 0.2 for forest green, and store the result in variable rgb.
Several modules, such as "Ant Movement," employ rule replacement of matrix values with RGB
color designations and then plot the result as a visualization of one time step of a simulation.

The argument to rand can also be a range of integers min..max, such as -5..5, indicating the range (min
through max), as in the following form:

 rand(min..max)

The uniform function from the stats package random package, can return uniformly distributed random
floating point numbers. We load the package as follows:

> with(stats[random]):

With no argument, uniform() returns a uniformly distributed random floating point number between 0.0
and 1.0, while uniform(n) returns n such numbers. Execute the following commands several times and
observe the output:

> uniform();

> uniform(10);

3
As with other functions in packages, we can employ the long form of the name, stats[random, uniform],
instead of loading the package, as follows:

> stats[random, uniform]() ;

To generate a random floating point number in a more general range from min to max, we employ
uniform[min..max]. The following long form of the function call generate 5 uniformly distributed random
numbers between 22.3 and 39.4:

> stats[random, uniform[22.3, 39.4]](5);

If stats[random] is loaded, the following short form of the command accomplishes the same task:

> uniform[22.3, 39.4] (5);

Quick Review Question 2
a. Give a segment to generate a number representing a random throw of a die with a return value
of 1, 2, 3, 4, 5, or 6.

b. Using the long form, give a command to generate a random floating point voltage from 0.0 to
5.0.

c. Load the package and subpackage containing uniform.

d. Using the short form with no range specification, give a command to generate 3 uniformly
distributed floating point numbers between 0.0 and 1.0.

A random number generator starts with a number, which we call a seed because all subsequent random
numbers sprout from it. The generator uses the seed in a computation to produce a pseudorandom number.
 The algorithm employs that value as the seed in the computation of the next random number, and so on.

Typically, we seed the random number generator once at the beginning of a program. The function call
randomize(n) seeds the random number generator with the integer n. For example, we seed the random
number generator with 14234 as follows:

> randomize(14234):

If the random number generator always starts with the same seed, it always produces the same sequence of
numbers. A program using this generator performs the same steps with each execution. The ability to
reproduce detected errors is useful when debugging a program.

However, this replication is not desirable when we are using the program. Once we have debugged a
function that incorporates a random number generator, such as for a computer simulation, we want to
generate different sequences each time we call the function. For example, if we have a computer simulation
of weather, we do not want the program always to start with a thunderstorm. By having no argument for
randomize , as follows, we seed the random number generator with a number based on the system clock
and obtain a different sequence of random numbers for each run of a simulation:

> randomize();

Quick Review Question 3
a. In a execution group without randomize , write a command to generate a list of ten random
integers from 1 through 100, inclusively. Execute the execution group several times, and notice that
the list changes each time.

b. Copy the execution group from Part a. In the new execution group before the command, call
randomize with the last four digits of your Social Security Number as an argument. Execute the
execution group several times, and notice that the list does not change.

4
Quick Review Question 4 Seed the random number generator with the time of day. Also, generate
a table of 50 random integers between 4 and 20, inclusively, and assign the result to the variable y1.
 The result should be a list with values in the set {4, 5, ...20}.

Modulus
An algorithm for a random number generator often employs the modulus operator , mod in Maple, which
gives the positive integer remainder of a first argument divided by a second. To obtain m modulus n , or
the remainder of the division of m by n, we employ a command of the following form:

 m mod n

(This call is equivalent to m % n in C, C++, and Java). Thus, the following statement returns, 3, the
remainder of 23 divided by 4.

> 23 mod 4;

An alternative form employs a mod function , which surrounds mod with backquotes (`) , or grave accent
characters, and has the m and n as arguments. The backward apostrophe key is towards the top left of the
keyboard on the same key with tilde (~).

 `mod`(m, n)

We employ the mod function instead of the mod operator when using a modulus result in an expression,
such as an assignment statement. The following command using the mod function assigns the result of 23
mod 4 to md:

> md := `mod`(23, 4);

Quick Review Question 5 Assign 10 to r. Then, assign to r the result of 7 r modulus 11. Before
executing the command, calculate the final value of r to check your work.

Selection
The flow of control of a program is the order in which the computer executes statements. Much of the
time, the flow of control is sequential, the computer executing statements one after another in sequence.
We refer to such a segment of code as a sequential control structure . A control structure consists of
statements that determine the flow of control of a program or algorithm. The looping control structure
enables the computer to execute a segment of code several times. In Module 2.1, the first Maple tutorial, we
considered the function for, which is one implementation of such a structure.

Definition The flow of control of a program is the order in which the computer executes statements. A
control structure consists of statements that determine the flow of control of a program or an algorithm.
With a sequential control structure , the computer executes statements one after another in sequence. The
looping control structure enables the computer to execute a segment of code several times.

A selection control structure can also alter the flow of control. With such a control structure, the
computer makes a decision by evaluating a logical expression. Depending on the outcome of the decision,
program execution continues in one direction or another.

Definition With a selection control structure , the computer decides which statement to execute next

5
depending on the value of a logical expression.

Maple can implement the selection control structure with an if statement . One form of the statement is as
follows:

 if (condition) then
 trueStatementSeq
 end if

If condition evaluates to be true, then Maple executes the statement(s) between then and end if. Otherwise,
Maple skips this sequence and continues executing after the if statement. For example, perhaps we want to
print every tenth value in a loop that has index i. After assignments to i and datum in the following
abbreviated segment, we test if the remainder of i divided by 10 is equal to 0. If so, we display i and datum
. Whether the remainder is 0 or not, the segment executes the print statement after the if. Execute this
segment. Then, change the value of i to 3 and observe that the print within the if statement does not
execute.

> i := 20:
datum := 17:

if (`mod`(i, 10) = 0) then
 print("In if, i = ", i, "datum = ", datum);
end if;

print("After if-statement");

The equal sign (=) that we used to test equality in the if condition above is an example of a relational
operator. A relational operator is a symbol that we use to test the relationship between two expressions,
such as two variables. Maple six relational operators, defined in the following table:

 Relational Operator Meaning
 = equal to
 > greater than
 < less than
 <> not equal to
 >= greater than or equal to
 <= less than or equal to

Operators with two characters must not contain spaces. The expression (n <> 7) means, “Is the value of the
variable n not equal to 7?” The answer to this question obviously is either yes or no. In programming logic,
however, we use the terms true and false instead.

Frequently, we have an "either-or" situation, which we program with another form of the if-statement, as
follows:

 if (condition) then
 trueStatementSeq
 else

6
 falseStatementSeq
 end if

If condition has the value true, then Maple executes the statement sequence trueStatementSeq ; and if
condition has the value false, Maple executes the statement sequence falseStatementSeq . Before executing
the following commands, predict the output and the value of minxy:

> x := 3:
y := 5:
if (x < y) then
 minxy := x
else
 minxy := y
end if;

Because x is less than y, the if construct executes the then statement assigning x to minxy. The if statement
accomplishes the same things as the following pseudocode:

 if x is less than y then
 minxy is assigned x
 else
 minxy is assigned y

Quick Review Question 6 Write a segment to generate and test a uniformly distributed random
floating point number between 0 and 1. If the number is less than 0.3, return 1; otherwise, return
0. If you executed the segment a number of times, approximately what percentage of the time
would you expect the function to return 1? Execute the command 10 times and count the number
of times the function returns 1.

Sometimes we need more than two choices. In this case, we use an else-if (elif) clause, as follows:

 if (condition1) then
 statementSeq1
 elif (condition2) then
 statementSeq2
 else
 statementSeq3
If condition1 is true, Maple executes statementSeq1 . If condition1 is false but condition2 is true, Maple
executes statementSeq2 . If both conditions are false, Maple executes statementSeq3 .

Quick Review Question 7 Copy the previous answer and paste it below. Before the if-statement,
store the value of the random number in a variable, cond, and end the assignment in a semicolon
so that Maple displays the number. Revise the if statement so that if the random number cond
stores is less than 0.3, print "less than 30%"; otherwise, if cond is less than 0.7, print "between
30% and 70%"; otherwise, print "70% or more". Execute the execution group several times, and
notice the relationship between cond and the print-out.

In several of the simulations, such as using if in an assignment or a sequence statement, we must use an if
operator instead of an if statement. Similar to the mod function, we place a backquote (`) before and after if
and have arguments of a condition, then clause, and else clause. In the following general form, if the first
argument, condition , is true, the operator form of if returns the second argument, trueExpression ; but if
condition is false, the expression returns the third argument, falseExpression.

7

 `if`(condition , trueExpression , falseExpression)

Quick Review Question 8
a. Convert your answer to Quick Review Question 6 to an if operator form.

b. Copy your answer to Part a below and place it in a loop that executes 10 times, so that the loop
displays 10 random 0's and 1's.

c. Instead of executing the if statement 10 times separately or using a loop, we can automate the
process using a table (list). Write a statement to assign to less30 a table of 10 elements, where each
element is the execution of the if operator from Part a . Execute your answer several times and
observe the changing results.

Quick Review Question 9 For this question, generate 10 random floating point numbers between 0
and 1 in a for loop, and display how many of these numbers are less than 0.3. Begin by initializing
a counting variable counter to be 0. Within the body of the for loop, have an if statement that
increments counter if a randomly generated number is less than 0.3. After the loop, type counter so
that upon execution Maple displays the variable's final value, which is a count of random numbers
less than 0.3.

Counting
Frequently, we employ lists in Maple; and instead of using a loop, we can use the function numboccur to
count items in the list that match a pattern. The format of the numboccur command is as follows:

 numboccur[list, pattern]

The function returns a count of the elements in the list that match the pattern. As the segment below
illustrates, numboccur provides an alternative to a for loop in the segment above that counts the number of
random numbers less than 0.3. First, we generate a table of 0s and 1s, such that if a random number is less
than 0.3, the table entry is 1. Then we count the elements in the table that match the pattern 1.

> rand01 := proc()
 RandomTools[Generate](float(method = uniform))
end proc:

tbl := [seq(`if`(rand01() < 0.3, 1, 0) , i = 1..10)];
numboccur(tbl, 1);

Quick Review Question 10 Write a segment to generate a table of 20 random integers between 0
and 5 and with numboccur to return the number of table elements equal to 3.

Flatten
A matrix, or rectangular array, of values consists of a list of lists. Sometimes, we wish to apply a function,
such as `+`, to all the elements of the list without consideration of sublists. That is, we want to eliminate
internal brackets or flatten the list of lists into one list. In the ListTools package, the function Flatten ,
whose format follows, returns a flattened list:

 Flatten(list)

The following segment defines a uniform random number generator, rand0to3 , for values in the set {0, 1,

8
2, 3}. The second statement assigns to tbl2 a list of four lists of random values.

> rand0to3 := rand(0..3):
tbl2 := [seq(
 [seq(rand0to3(), i = 1..4)],
 j = 1..4)];

The segment below returns a flattened list. However, because the second statement is not an assignment to
tbl2, the value of tbl2 remains the same as before execution of the segment.

> with(ListTools):
Flatten(tbl2);

Quick Review Question 11 Write a command to return the sum of the numbers at any level in tbl2.

Loading a Package
Maple is an extensible system. We can define our own functions and use functions from packages written
by others. A package is a Maple file consisting primarily of definitions that we can load into our system to
create additional functionality. For example, to use the Flatten function, we loaded the ListTools package,
which defines Flatten. Packages can be organized into subpackages . For example, among others, the
statistical package stats contains subpackage describe for data analysis functions, such as mean and
standarddeviation ; subpackage fit for linear regression functions, such as leastsquare ; subpackage
random for random numbers in various probability distributions, which we cover in Module 9.3; and
subpackage statplots for plotting functions, such as histogram , which we cover shortly. We instruct
Maple to load a package (package) using with, as follows:

 with(package)

After loading a package, we can load a subpackage using with. Alternatively, we can load the package and
subpackage in one step, as follows:

 with(package[subpackage])

The following input execution groups illustrate two ways to load the subpackage describe of the package
stats:

> with(stats[describe]):

> with(stats):
with(describe):

With a package and subpackage loaded, we can employ the following short format to call a function from
the subpackage:

 function (arguments)

For example, the function mean in the describe subpackage returns the mean, or average, of the elements in
a list and has the following short format:

 mean(list)

9
Similarly, the function standarddeviation returns the standard deviation of the elements in a list. With the
stats subpackage describe loaded, the following segment creates a list of 10 integers between 0 and 99 and
returns the mean and standard deviation:

> rand0to99 := rand(0..99):
tbl := [seq(rand0to99(), i = 1..10)];
mean(tbl);
standarddeviation (tbl);

For a function in a subpackage, we can also use the following long form of a function call:

 package[subpackage , function](arguments)

For example, we can call mean as follows:

> stats[describe, mean] (tbl);

Should the package be loaded, the following long form of a subpackage function can be written:

 subpackage[function](arguments)

In this situation, the call to mean is as follows:

> describe[mean] (tbl);

If we attempt to reference a function from a package before loading the package, Maple substitutes what it
can and returns the function call, such as in the following:

> histogram(tbl);

Realizing our omission, we can load the proper package and perhaps subpackage and re-execute the
command, or we can employ the long form of the function call.

Quick Review Question 12
a. The function GetElement to return the atomic weight and other information about an element is
in the package ScientificConstants . Without loading the package first, attempt to find information
on sodium (Sodium) by executing the function call to GetElement below. Notice that output does
not contain the desired results.

> GetElement(Sodium);

b. Using the question mark, find information on GetElement .

c. Using the long form of a call to GetElement , find information about sodium.

d. From the output, determine the atomic weight of sodium.

e. Load the package ScientificConstants .

f. Repeat Part c using the short form of the function call.

Histogram
A histogram of a data set is a bar chart where the base of each bar is an interval of data values and the
height of this bar is the number of data values in that interval. For example, execution of the code below
yields a histogram of the data in lst = [1, 15, 20, 1, 3, 11, 6, 5, 10, 13, 20, 14, 24]. In the figure, the 13
data values are split into three bars that have the same area. Because five data values (1, 1, 3, 6, and 5)

10
appear in the first interval, the height of that bar is 5.

Definition A histogram of a data set is a bar chart, where the base of each bar is an interval of data values
and the height of this bar is the number of data values in that interval.

The Maple subpackage statplots in package stats contains a command, histogram , to produce a histogram
of a list of numbers. The code below loads the package, which we only must do once per session; assigns
a value to lst; and displays its histogram with approximately equal areas for the bars. With the option-value
pair area = count , the height of each bar represents the number of data items in that category. Thus, five
data items--1, 1, 3, 6, and 5--are between 1 and 8, inclusively.

> with(stats[statplots]):

> lst := [1, 15, 20, 1, 3, 11, 6, 5, 10, 13, 20, 14, 24]:
histogram(lst, area = count);

Execution of the code below displays a histogram of a table, tbl, of 1000 values from 0 to 2. (The table
values only serve as data for graphing; each table entry is 2 times the maximum of two random floating
point numbers between 0.0 and 1.0.) The commands to generate the table and produce the histogram are as
follows:

> with(RandomTools):
tbl := [seq(
	

 2 * max(Generate(float(method = uniform)) ,
 	

Generate(float(method = uniform))),
	

 i = 1..1000)]:
histogram(tbl, area = count);

Maple determines an appropriate number of categories, here 12 intervals, each of length about 0.0833 units.
 We can specify the number of categories with the option numbars . The following command indicates 10
categories for the same data:

> histogram(tbl, area = count, numbars = 10);

Quick Review Question 13
a. Generate a table, sinTbl, of 1000 values of the sine of a random floating point number between 0
and Pi.

b. Load the appropriate package for plotting a histogram.

c. Display a histogram of sinTbl.

d. Display a histogram of sinTbl with 5 categories.

e. Give the interval for the last category.

f. Approximate the number of values in this category.

Defining a Package
Maple includes a number of packages with the software, and other packages are available from various
sources. We, too, can develop our own package of function and constant definitions that we can load as
needed. A package enables us to encapsulate related, thoroughly tested definitions; and several projects
require the development of packages.

We store packages in a repository , or library. We use the Maple library archive manager command
maple to create and manipulate a repository. For creation, we have a leading argument of 'create'. The
second argument is the path name for the archive in quotation marks. The abbreviation for the current

11
working directory is a period (.), and the extension for the repository is .lib. The third argument is an
integer, such as 100, giving the approximate number of archive members, such as functions and constants.
The command below creates in the current working directory library archive files myLib.lib and myLib.ind
that can store about 100 members. If a repository already exists in this directory, march does not create a
new one.

> march('create' , "./myLib.lib", 100);

A package definition begins in a Maple worksheet with the name of the package, such as myPackage
below, on the left-hand-side of an assignment statement. The right-hand-side of the definition below
begins with module() and ends with end module. An export statement lists the package functions and
constants that are public so that code outside the package can access them. Package functions and
constants not listed in the export statement cannot be used outside the module body. Opening comments
give the name, author, and date of the package. Afterwards, we have the definitions of two functions,
tripleMean and myMax. The constant ZZZ is private. Typically, a private function or constant is for local
use by other functions. However, here, we use ZZZ only for illustration.

> myPackage := module()
export tripleMean, myMax;

#:Name: myPackage
#:Author: me
#:Date: now

tripleMean(a, b, c) gives mean of 3 arguments
tripleMean := (a, b, c)->(a + b + c)/3.0;

myMax returns the maximum of two arguments
myMax := (a, b)->`if`(a > b, a, b);

ZZZ is a constant
ZZZ := 3;

end module;

After defining this module, we need to save myPackage . The variable libname stores a sequence of strings
for the file-system locations of the main Maple library and other libraries. To save myPackage in a
directory not already in the sequence, we make a string with the location's name the first element of libname
by assigning to libname the sequence of this string and the previous value of libname. Then, we employ
the savelib command with the name of the module in apostrophes. In the example below, we adjust
libname to first contain a string representing the current working directory, ".", and then we save
myPackage to the repository, myLib, in that directory. Maple saves the package as myPackage.m in the
repository myLib.

> libname := ".", libname ;
savelib('myPackage'):

To view the contents of an archive, we invoke Maple archive manager march with a 'list' option and the
repository. The manager returns a list with a list for each .m file in the repository along with its date and
time, among other things. Thus, the output of the following command indicates that myPackage.m is a
member of myLib:

> march('list', "./myLib.lib");

To observe how to load and use a package, we first restart the system.

> restart:

12
With the restart, the previous expanded value of libname has been lost. Thus, so that Maple can find our
repository, we again place the string name of the current directory as the first member of the sequence of
locations that libname holds. We load a user-defined package as we do a system package, using with. The
command returns a list with the functions that are publicly available for use.

> libname := ".", libname:
with(myPackage);

The following two statements illustrate that we can use tripleMean but not the value of ZZZ:

> tripleMean(1, 3, 6);

> ZZZ;

Quick Review Question 14
a. Restart the system.
v. If you did not do so above, in your current directory, create a repository, myLib.
c. Define a package, minPkg that contains a public function, myMin , which returns the minimum of
two arguments.
d. Save the package to your repository.
e. List the contents of your repository.
f. Restart the system.
g. Load the package minPkg .
h. Test the function for several pairs of arguments.

Procedure Definitions
In Tutorial 1, we discussed defining simple functions that have one statement. Frequently, however, the
function needs a group of several statements. To do so, we employ a procedure . As with the format we
have been using, the function name is on the left-hand-side of an assignment equal. The right-hand-side
begins with proc and ends with end proc. After proc, parentheses surround parameters. In longer
function definitions, we often employ temporary variables that should only be active within the definition.
To avoid conflicts with variable names elsewhere, we make the variables local to the definition with a local
and list of local variables. Another optional statement is description , which contains a comment in
quotation marks. When a procedure is displayed, so is its description.

The procedure below returns a list with the floating point quadratic formula values. A quadratic formula, (
-b ± b 2 - 4 a c)/(2a), provides the solution(s) to a quadratic equation, a x 2 + b x + c = 0. If the
determinant, b 2 - 4 a c, is zero, only one solution, - b/(2a), exists in the set of real numbers. If the
determinant is positive, two distinct solutions exist. However, if the determinant is negative, no real
number solution exists. The procedure definition of quadraticFormula below has three parameters, a, b,
and c, that are the coefficients in the quadratic equation. A local variable, discriminant , is unknown outside
the function definition. The following definition illustrates the form of a function definition using proc,
local, and description:
> quadraticFormula := proc(a, b, c)
 local discriminant;
 description "Quadratic Formula ";
 discriminant := b^2 - 4 * a * c;
 if (discriminant > 0) then
 [(-b + sqrt(term))/(2 * a),
 (-b - sqrt(term))/(2 * a)];
 elif (discriminant = 0) then
 [-b/(2 * a)];

13
 else
 [];
 end if;
end proc:

The following call to quadraticFormula returns a list with the two distinct solutions to x 2 + x - 6 = 0:

> quadraticFormula(1, 1, -6);

Because the discriminant is zero, the following call returns a list with the one distinct solution to
x 2 - 6 x + 9 = 0:

> quadraticFormula(1, -6, 9);

With a negative discriminant, the quadratic equation has no real solutions, so the following call returns an
empty list 3 x 2 + 5 x + 7 = 0:

> quadraticFormula(3, 5, 7);

Although the function definition assigns a value to the local variable discriminant , we cannot access this
value outside the definition, as the following illustrates:

> discriminant;

Occasionally, such as in several simulations for Chapter 11, to avoid passing a widely used value through
the argument-parameter list, it is convenient to employ a variable that is global. In such a case, we declare
the variable to be global. However, such circumstances are rare. Thus, we should use the feature
sparingly and should carefully document use of any global variable. The following command declares
variables rate and probabilityOfFall to be global:

> global rate, probabilityOfFall;

Quick Review Question 15
a. Define the function myMax from the section on "Defining Packages" to be a procedure. Have a
procedure description. Employ a local variable returnMax . Use an if statement instead of an if
operator. Inside the body of the if statement, assign the return value to returnMax . Have a
statement with returnMax; on a line by itself after the if statement.
b. Test the function thoroughly.

Truncation
Several exercises and projects from Module 9.2 on "Simulations" can use truncation.

The module on "Simulations" discusses implementation of random number generators. One such
generator that returns an integer must truncate, or chop off, the decimal fraction of a floating point number
to return the integer part. As the following examples illustrate, the Maple function trunc performs such
truncation towards zero.

> trunc(3.8);

> trunc(-3.4);

Quick Review Question 16
a. Define a function absFractionalPart to return the fractional part of a number as a nonnegative
floating point number. For example, absFractionalPart (3.469) and absFractionalPart (-3.469)
should both return 0.469. Thus, if parameter x is nonnegative, absFractionalPart returns the
difference in x and the truncation of x to an integer. If x is negative, the function returns the
difference in the truncation of x and x. Define absFractionalPart using proc.

14
b. Test the function thoroughly.

Variable Number of Parameters
Several projects from Module 9.2 on "Simulations" can use the material from this section.

In defining our own functions, we may need a variable number of arguments for a procedure. Perhaps, if
an argument is missing, we may want to give the variable a default value. Thus, we need some way to
represent and count the number of arguments. To define such a function, we do not indicate any
parameters. Within a procedure, nargs gives the number of arguments; and we use args[1] for the first
argument, args[2] for the second, and so forth. The following procedure returns the maximum of exactly
two arguments. For exactly one argument, the procedure returns that argument. In all other cases, the
procedure returns 0.

> max2 := proc()
 local returnVal;
 description " Returns max of 2 arguments, one argument, or 0";
 if (nargs = 1) then
 returnVal := args[1]
 elif (nargs = 2) then
 if (args[1] > args[2]) then
 returnVal := args[1]
 else
 returnVal := args[2]
 end if
 else
 returnVal := 0
 end if;
 returnVal;
end proc:

> max2();

> max2(5);

> max2(7, 9);

> max2(17, 9);

> max2(17, 9, 4);

Quick Review Question 17
a. Define a function sumAll that returns 0 if the function has no arguments and otherwise returns
the sum of all arguments. Use proc. For the sum of several arguments, initialize a local variable,
say returnVal, to be 0. Then, within a for loop having index i, assign to returnVal the sum of
returnVal and args[i].
b. Thoroughly test the function.

15

