
1

8.1 Computational Toolbox—Tools of the Trade: Maple Tutorial 3

File: MapleTutorial3.mw

Introduction to Computational Science: Modeling and Simulation for the Sciences
Angela B. Shiflet and George W. Shiflet

Wofford College
© 2006 by Princeton University Press

Introduction
The prerequisites to this tutorial are " Maple Tutorial 1" and " Maple Tutorial 2." Tutorial 3 prepares you to
use Maple to complete projects for this chapter and is useful for material in subsequent chapters. The
tutorial introduces the following functions and concepts: list-related operations and functions, such as seq,
display as a matrix, and transpose; additional graphics features and options, such as scaling, plot range,
color , and linestyle; display; curve fitting with LeastSquares ; replacement rules with eval; reading from a
file; and logarithms. The module also gives examples along with Quick Review Questions for you to do
with Maple. Execute all input cells to view the results of the examples.

Sequences
Lists are essential to Maple, and we can employ the seq command in brackets to generate a list from
repeated evaluation of an expression. The following form of the command with index i generates a
sequence of elements that are evaluations of expr for i varying from imin to imax:

 seq(expr, i = imin..imax)

For example, the command below generates a sequence of five zeros. In this case, the expression, 0, does
not use the index, i, which ranges from 1 to 5, to cause the generation of five elements.

> seq(0, i = 1..5) ;

To create a list, we place the command in brackets, as follows:

> [seq(0, i = 1..5)] ;

The following command, which does employ the index x in the expression, generates a list of successive
positive powers of 2:

> [seq(2^x, x = 1..6)];

Quick Review Question 1 Do anything that is asked of you in cells that look like this one, marked
as a Quick Review Question in boldface. Because such cells are text cells and not input cells, do not
type in these cells. Instead, if a greater than prompt (>) does not appear in an otherwise empty
execution group below, from the Insert menu, Execution Group submenu, select After Cursor .
Alternatively, use the shortcut indicated on that menu or click the icon ([>) to "Insert executable
Maple input after the current paragraph."

In an example of the section "Appending to a List" in " Maple Tutorial 2," we defined g(x) =
3 sqrt x()

, initialized the list gLst to be empty, and then stored g(i) for the positive integers i less than 10 in
gLst. Give a command with seq to create gLst without defining g.

Quick Review Question 2 In an example of a for loop from " Maple Tutorial 1," we initialized dist to
be 0 and then seven times changed its value with the assignment dist := dist + 2.25 until dist became
15.75. Write a command to generate a list, distLst, containing these values from 0 through 15.75.

2
Do not use dist.

We can use seq to form a list of ordered pairs, too. For example, after defining f(x) =x 2, we generate a list
of pairs of values of x and f(x). To obtain the six values of x, 0.0, 0.5, 1.0, 1.5, 2.0, and 2.5, we have an
index i going form 0 through 5 and have the x-coordinate be 0.5 i, as follows:

> unassign(f):
f := x-> x^2;
flst := [seq([0.5*i, f(0.5*i)] , i = 0..5)];

Quick Review Question 3 In last Quick Review Question of "Maple Tutorial 2," you generated the
following list (lst) of 30 points: [[0, 1.2], [0.25, 1.44], [0.5, 1.728], …, [7.25, 237.376]]. The first
coordinate was 0.25 times an index i that varied from 0 to 29. The second coordinate, y, which was
1 before the loop, was 1.2 its previous value inside the loop. Thus, the second coordinate is a power
of 1.2. Instead of using a for loop as in the previous tutorial, create the list (lst) using seq.

The command below generates a nested list that is comparable to a two dimensional array, where for each
value of i from imin to imax, j varies from jmin to jmax. The result is a list that contains lists

 [seq([seq(expr, j = jmin..jmax)], i = imin..imax)]

For example, the next command produces a list that is a 4-by-7 rectangular array:

> prod := [seq(
 [seq(x * y, y = 3..9)],
 x = 1..4)];

At the highest level, prod contains four lists, one for each value of x from 1 through 4. Each of the four
lists contains seven elements, one for each value of y from 3 through 9. At this lowest level, each element
is the product of the corresponding values of x and y. Thus, the value of prod is a partial multiplication
table.

Quick Review Question 4 Write a command to generate a table of values of (0.1*x)^(2*y - 1), where
for each x value of 20, 21, 22, 23, 24, and 25, y takes on values 1, 2, and 3. Thus, the output is [[2.,
8., 32.], [2.1, 9.261, 40.841], [2.2, 10.648, 51.5363], [2.3, 12.167, 64.3634], [2.4, 13.824, 79.6262], [2.5,
15.625, 97.6563]].

Displaying as a Matrix
We might find the information in list flst = [[0, 0], [0.5, 0.25], [1., 1.], [1.5, 2.25], [2., 4.], [2.5, 6.25]]
above easier to understand if the format is in two columns instead of as one long list. The command
convert can display an argument list of lists that have the same length as a rectangular array, or matrix, of
elements. The following command produces the list in two column output:

> convert(fLst, array);

Thus, we can think of this six-element list flst of ordered pairs as a rectangular array of six rows and two
columns.

Quick Review Question 5 Write commands to display the following lists as rectangular arrays:
a. lst of 30 points from Quick Review Question 3 in the "Sequences" section

b. prod from the end of the "Sequences" section

c. The table from Quick Review Question 4. Copy the command that is the answer for that
question to a new execution group as an argument for the convert command.

3
Transpose

In Module 8.3 on "Empirical Models," we deal with some examples where the first and second coordinates
of data are in separate lists that need to be incorporated into one list of ordered pairs. For example, suppose
for an hour a scientist measures amounts (in milligrams) of residues from a chemical reaction every 12
minutes, or 0.2 hours. The following command assigns to tlst the list of times, [0, 0.2, 0.4, 0.6, 0.8, 1.]:

> tlst := [seq(0.2*k, k = 0..5)];

The following rlst is a list of residue measurements:

> rlst := [0.00, 0.05, 0.16, 0.23, 0.55, 1.00];

The following expression produces on the output line a list of two lists, each with 6 elements:

> [tlst, rlst];

Using convert, we display this list as a rectangular array of two rows and six columns:

> convert([tlst, rlst], array);

The first row consists of the times, while the second stores the measured residues. To generate a list of
ordered pairs of corresponding times and residues, we take the transpose of the list of lists [tlst, rlst].
Without changing the original list, the transpose function, Transpose , in Maple package ListTools returns a
list with the rows and columns swapped. Thus, after loading the package using the with command, a
statement assigns the list of ordered pairs to trans:

> with(ListTools):
trans := Transpose([tlst, rlst]);

Alternatively, we can call Transpose specifying its package without loading the entire package, as follows:

> trans := ListTools[Transpose]([tlst, rlst]);

The command convert to array shows the transposed list in six rows and two columns:

> convert(trans, array);

Definition The transpose of a matrix (rectangular array) is a matrix with the rows and columns
exchanged from the original matrix.

Quick Review Question 6 Write a statement to generate a list xLst of positive integers from 1
through 9. From Quick Review Question 1, gLst stores the corresponding values of g(x). Write
commands to assign to pairsLst the list of ordered pairs and to display pairsLst as a rectangular
array.

Additional Graphics Options
In the previous Maple tutorials, we covered basic graphing of functions with plot and plotting data with
listplot. In this tutorial, we discuss some additional features that are helpful in producing meaningful
scientific visualizations.

The aspect ratio of a graphics is its width divided by its height. For example, if a graphics is 6 cm wide
and 3 cm high, then its aspect ratio is 6 / 3 = 2; and if the dimensions are reversed, the aspect ratio is 3/ 6 =
1/2. Maple decides the aspect ratio that it considers best for each graph. To override the default and
designate that a unit on the x-axis has the same length on the y-axis, we can employ the scaling option with
value constrained as scaling = constrained . Such specifications can be helpful for visualization of a
graphics without distortion.

Definition The aspect ratio of a graphics is its width divided by its height.

4

Although we specify the part of the domain to graph, Maple decides on an appropriate part of the range
unless we override the software's decision by specifying the plotting range as y = c..d. Thus, we specify
the horizontal and vertical portions of the plot. The plot of f(x) = x 2 with domain from -3 to 3, range 0 to
9, the same proportions (scaling = constrained) on both axes, and the axes labeled (labels) as follows
results in the graph shown:

> f := x->x^2:
plot(f(x), x = -3..3, y = 0..9,
 scaling = constrained ,
 labels = [" x ", " y "]);

Quick Review Question 7
a. Graph y = ln(x 2) from 0.1 to 6 without any options except labels .

b. Copy the command from Part a to a new execution group. In that cell, specify that the graph
should be shown from 0 to 6 on the x-axis and from –2 to 3 on the y-axis.

c. Copy the command from Part b to a new cell. In that cell, specify that for the graph unit
lengths should be the same on both axes. Observe the impact of each option on the graph.

Frequently, we wish to show more than one plot in the same graphics for comparisons. To do so, we
group the functions in brackets in the plot command. The following segment defines g and plots f from
above and g in the same graphics:

> f := x->x^2:

> unassign(g):
g(x) := f(x) + 1;
plot([f(x), g(x)], x = -3..3);

In such situations, Maple uses different colors, such as red and green, to differentiate clearly between the
two graphs. Instead of using the system's default colors, we can designate colors for display on a monitor
or color printer, or we can employ assorted thicknesses or dashing for a black-and-white printer. With the
option color , we can indicate a predefined or a user-defined color for each function's graph with the
option-value pair, color = value . Some of the predefined colors are red, green, blue, black, yellow,
orange, pink, purple, brown, tan, and grey . As with the functions, the two color values are grouped in
brackets, as follows:

> plot([f(x), g(x)], x = -3..3,
 color = [purple, pink]);

Sometimes, in a scientific visualization, we need to show a gradual change in color and consequently
cannot use predefined color constants. However, we can designate a color in terms of its RGB value,
which consists in three floating point numbers between 0 and 1 that indicate the amount of red, green, and
blue in the composite color. We give the value using the COLOR structure with arguments RGB and three
floating point numbers for the primary component amounts. As a result of the segment below, the first
function, f, appears in a light cyan because its associated RGB color indicates no red (0), 50% (0.5) green,
and full (1.0) blue. The second function, g, goes with the second color, which indicates a caramel color
having RGB values of 1.0, 0.5, and 0.0, respectively.

> plot([f(x), g(x)], x = -3..3,
 color = [COLOR(RGB, 0.0, 0.5, 1.0),
 COLOR(RGB, 1.0, 0.5, 0.0)]
);

Quick Review Question 8 Go to the input above and include the function 3x + 2 in a shade of green

5
that has RGB values of 0.1, 0.9, and 0.1, respectively. Make the changes on the input; do not
retype the cell.

To distinguish grays on a black-and-white printer, instead of using color, we can designate the thickness in
terms of a nonnegative integer whose default is 0. The graphics displays the result of the following
command with the function g thicker than f and both in black.

> plot([f(x), g(x)], x = -3..3,
 color = black, thickness = [0, 4]
);

Quick Review Question 9 Copy the input from Quick Review Question 8 and paste it below. On
the pasted execution group, have the graphs display in black-and-white with progressively thicker
lines.

Alternatively, we can indicate a plot linestyle of DASH, DOT, DASHDOT , or SOLID (the default) that
indicates the graph is to be dashed, dotted, dash-dotted, or solid. The example below, has no extra
specifications for the graph of f so that it appears as a solid line and indicates that the graph of g should be a
thicker, dashed line.

> plot([f(x), g(x)], x = -3..3,
 color = black, thickness = [0, 4],
 linestyle = [SOLID, DASH]
);

Quick Review Question 10 Copy the input from Quick Review Question 9 and paste it below. On
the pasted execution group, have the graphs display in black-and-white. Display f having a
thicker line that is dashed; display g with no extra options; and display 3 x + 2 dotted.

The graphical user interface (GUI) for Maple has an interactive option for graphics that leads the user
through the plotting process and has cells for option values, buttons, and drop-down menus. To activate
the plotting GUI, we load the plots package and call the plots function interactive with a function to be
plotted as the argument. Alternatively, we do not fully load the package but call plots[interactive] with a
function argument. Both forms are below. After executing one of them, explore changing the plot options,
observe the resulting graphics, and click the Command button to see the Maple command.

> with(plots):
interactive(f(x));

> plots[interactive](f(x));

Showing Several Graphics Together
Several times in Module 8.3 on "Empirical Models," we need to display a plot of data points and a plot of a
function in the same graphics. To do so, we generate each graphics, saving the results in variables, and
then display the combination using the display command with the variables as arguments. For example, the
segment below defines a list of points (pts), generates a graphics with the points, and stores the graphics in
variable lp. As we see by executing the command, Maple does not display the graph.

> pts := [[-3, 20], [2, 20], [-1, -10], [4, 30], [0, 0]]:
with(plots):
lp := listplot(pts, labels = ["x", "y"],
 style = point, color = red, symbolsize = 20):

To see the graph, we employ the display function with argument being the variable lp, which obtained its
value in the previous execution group. Because display is also in the plots package, we can invoke the
function in either of the following ways

6
> display(lp);

> plots[display] (lp);

The next segment plots a cubic polynomial, storing the graphics in variable plt and displaying the result:

> plt := plot(-3 + 9*x + 3*x^2 - x^3, x = -3..5,
 color = blue):
plots[display](plt);

With the display command below, we show the data points and cubic together. The result illustrates that
the cubic somewhat captures the trend of the data.

> plots[display] (lp, plt);

Line Graphics Element
We can generate a line having the beginning and ending points, (x1, y1) and (x2, y2), by using the listplot
command from the plots package. The first argument of listplot is a list containing the endpoints. We use
the style default option of line with other desired plotting options. Thus, to display a thick line from point
(1.309, 2.138) to point (1.68, 5.66), we employ the following command:

> listplot([[1.309, 2.138], [1.68, 5.66]],
 thickness = 5);

Quick Review Question 11 Replace each xxxxxx to complete the command below to display a line
through points (0, 0) and (1, 3). Have graphics directives to designate a dashed line and RGB
color levels of 0.4 for red, green, and blue. Use the full designation of the package and function
name for plotting.

> xxxxxx[xxxxxx](xxxxxx[0,0],[1,3] xxxxxx,
 xxxxxx = xxxxxx,
 xxxxxx = xxxxxx(xxxxxx, 0.4, 0.4, 0.4));

Curve Fitting
In Module 8.3 on "Empirical Models," we investigate discovering functions that capture the trend of data.
To do so, we employ the Maple function LeastSquares from the package CurveFitting . Below is one
form of loading the package and calling LeastSquares to fit an equation, eqn, in an independent variable,
var, to the data. We can present the data in a list of ordered pairs, pts. We are requesting Maple perform
the calculations so that the equation is the best least square fit to the data.

 with(CurveFitting):
 LeastSquares (pts, var, curve = eqn)

Maple returns the function that "best" fits the data in a list of points. For example, consider the list pts
from above:

> pts := [[-3, 20], [2, 20], [-1, -10], [4, 30], [0, 0]]:

The following command loads the CurveFitting package and fits a cubic polynomial
a x 3 + b x 2 + c x + d to data:

> with(CurveFitting):
fitCubic := LeastSquares(pts, x,
	
curve = a*x^3 + b*x^2 + c*x + d);

We plot fitCubic as follows, storing the result in variable cubicPlot:

7
> cubicPlot := plot(fitCubic, x = -3..4,
 color = blue):
plots[display](cubicPlot);

After assigning the data and cubic plots to lp and cubicPlot, respectively, we can show the two graphics
together using display, as follows:

> lp := plots[listplot] (pts, labels = [" x ", " y "],
 style = point):
plots[display](lp, cubicPlot);

An alternative form of LeastSquares , which follows, presents the data as a list of first coordinate data,
x_data_list , and a list of second coordinate data, y_data_list :

 with(CurveFitting):
 LeastSquares (x_data_list, y_data_list, var, curve = eqn)

The above list of points, pts, consists of the following lists of x- and y-coordinates:

> xLst := [-3, 2, -1, 4, 0]:
yLst := [20, 20, -10, 30, 0]:

Thus, with the CurveFitting package loaded, we can employ the following form of the LeastSquares
command:

> fitCubic := LeastSquares(xLst, yLst, x,
	
 curve = a*x^3 + b*x^2 + c*x + d);

Quick Review Question 12
a. Plot the list of points stored in variable pts2 below and save the graphics in variable pts2Plot.
Have the points be green and a slightly larger size than those in the previous execution group.

> pts2 := [[0.4, 0.16], [0.6, 0.23], [0.8, 0.55], [1.0, 1.0]]:

b. Give the command to have curveFit store the equation of the line to fit "best" pts2. Recall that
the general equation of a line is y = mx + b .

c. Plot the line from Part b and store the graphics in variable curvePlot.

d. Show the graphics for pts2Plot and curvePlot together.

e. Copy the command from Part b to a new execution group. Edit the copied cell to fit a quadratic,
y = a x 2 + b x + c, to the data.

f. Copy the command from Part c to a new execution group and re-execute to plot the quadratic.

g. Copy the command from Part c to a new execution group and re-execute to show the data and
quadratic in the same graphics.

LeastSquares gives the least-squares fit to a list of data. In Module 8.3 on "Empirical Models," we explain
least-squares fit and its utility in working with data.

Mapping
In Module 8.3, as part of the process of capturing the trend of data, we need often need to perform an
operation, such as squaring, on each element of a list. The Maple function map enables us to apply a
procedure element-by-element to a list. One form of the function call, which follows, applies the procedure
fnc to each element of the list lst:

8

 map(fnc, lst)

For example, consider the following function, sqr, to square a number:

> sqr := x -> x^2:

 Also, consider the following list, xLst, of numbers:

> xLst := [3, 5, -2]:

The following call to map applies sqr to each element of xLst and returns the list [sqr(3), sqr(5), sqr(-2)]:

> map(sqr, xLst);

Often, we do not need a procedure, such as sqr, elsewhere. In this case, we can employ a functional
operator, which is like an unnamed procedure. With sqr, the functional operator consists of the procedure
definition to the right of " sqr :=". We use this functional operator in place of sqr in the call to map, as
follows:

> map(x -> x^2, xLst);

Quick Review Question 13 Consider the following lists of x- and y-coordinates from pts2 of Quick
Review Question 12:

> xLst2 := [0.4, 0.6, 0.8, 1.]:
yLst2 := [0.16, 0.23, 0.55, 1.0]:

a. Using a functional operator, assign to yLst2Power a list with every element of yLst2 raised to the
0.1 power.

b. Using Transpose from ListTools , assign to pairsLst a list of ordered pairs with corresponding
elements from xLst2 and yLst2Power.

c. Plot the points of pairsLst and compare the shape of the graph with pts2Plot of Quick Review
Question 12 a.

d. Define a function, tenthRoot, to take the tenth root (raise to the 0.1 power) of an argument.

e. Using map, obtain a list with tenthRoot applied to each element of yLst2. Compare this answer
with that of Part a.

Rules
Maple eval function enables us to have transformation rules, or to change expressions from one form to
another. To replace every occurrence of x with a in expression expr, we employ the following form of the
rule:

 eval(expr, x = a)

For example, suppose fitDataEq is 0.0225362 + 0.75118 z, and we wish to replace z with x 3.9 in the
expression fitDataEq . We use the eval command as in the following segment:

> fitDataEq := 0.0225362 + 0.75118*z:
eval(fitData, z = x^3.9);

Moreover, we can define a function f equal to the result, as follows:

> unassign(f);

9
f := x->eval(fitData, z = x^3.9);

To make several substitutions, we have a list (with brackets) or set (with braces) of equations, eqns, for the
rules, as follows:

	
eval(expr, eqns)

For example, we can replace z with x 3.9, a with 25, and b with 3 in an expression, as follows:

> eval(a + b*z, [z = x^3.9, a = 25, b = 3]);

Alternatively, we can place the substitution rules in a set using braces instead of a list, as follows:

> eval(a + b*z, {z = x^3.9, a = 25, b = 3});

Quick Review Question 14 Add rule replacements to the following line to return an expression
replacing u with 2 x and v with ln(y).

> u + 7*v;

Reading from a File
Files can store huge amounts of data and simplify input. Links to data files for various projects appear on
the textbook's website. For example, Module 8.3 on "Empirical Models" uses the file
DanWoodEMData.dat , which follows, and several much larger files:

	
 1.309 2.138
	
 1.471 3.421
	
 1.490 3.597
	
 1.565 4.340
	
 1.611 4.882
	
 1.680 5.660

The Maple function readdata can read a file of numbers or data of other types into a table. One form of the
command is as follows:

 readdata["filename", n]

The file name must appear in quotation marks if the name contains characters other than letters of the
alphabet or digits. Also, this name must be in the path of where Maple looks, or we must specify the full
path name of the file. The second argument is a positive integer indicating the number of columns of data.
Maple returns the data in a list with values on each line in a list. Thus, to have pairs of floating point
numbers grouped into two-element lists, we can use a second argument of 2. For example, the file
DanWoodEMData.dat consists of two columns of data for x- and y-values. To read the data into a list of
points with the coordinates of a point in brackets and to store the resulting list in the variable pts, we
employ the following command:

> pts := readdata("DanWoodEmData.dat", 2);

Quick Review Question 15 Replace each xxxxxx to complete the command to read the data of
DanWoodEMData.dat into a list, lst, of 12 numbers:

> lst := xxxxxx DanWoodEMData.dat xxxxxx

Logarithms

10
See the section on "Logarithmic Functions" from Module 8.2 on "Function Tutorial" for a
discussion of logarithms.

In Maple, the common logarithm of n is log10(n). Thus, the following call to the function returns 3:

> log10(1000)

The natural logarithm of n is ln(n) in Maple. Thus, ln(50.0) returns 3.91202 because e 3.91202 is 50.
Bases other than e or 10 are permissible as long as the base is greater than 1. In general, Maple's log[b](n)
is the logarithm to the base b of n.

Quick Review Question 16
a. Plot e x and ln x on the same graph.
b. Evaluate the common logarithm of 7 as a floating point number.

11

