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Prerequisite:  “Berkeley Madonna Tutorial 1”
Download
[bookmark: OLE_LINK5][bookmark: OLE_LINK6]Download from the text's website the file unconstrained, which contains a
Berkeley Madonna model to accompany this tutorial.   
Introduction
[bookmark: OLE_LINK52][bookmark: OLE_LINK45]This tutorial introduces the following functions and concepts, which subsequent modules employ:  Built-in functions and constants, such as IF, THEN, ELSE, ABS, INIT, EXP, TIME, PI, PULSE, DT, SIN, and COS; relational and logical operators; comparative graphs; and graphical input.  Optionally, we cover conveyors, which are useful for some of the later projects.  
	To understand the material of this tutorial sufficiently, we recommend that you do everything that is requested.  While working through the tutorial, answer Quick Review Questions in a separate document.
Built-ins
We can enter equations into a reservoir, flow, or formula of a Berkeley Madonna model.  Equation Help under the Help menu summarizes Berkeley Madonna's functions and features.  In this tutorial, we consider several of these functions that enable us effectively to model many more situations.
	Table 2.4.1 lists many of the Berkeley Madonna functions along with their formats and meanings.  The following tutorial illustrates a number of these through examples.
Table 2.4.1	Some Berkeley Madonna functions
	ABS(n)
	|n|, absolute value n

	l1 AND l2
	Logical AND of l1 and l2, where l1and l2 are logical expressions

	COS(r)
	cos(r), where r is an angle in radians

	DT
	Time increment

	ELSE s2
	In IF l THEN s1 ELSE s2, if l is false, s2 is returned

	[bookmark: OLE_LINK34]EXP(x)
	ex

	IF
	In IF l THEN s1 ELSE s2, if l is true, s1 is executed; if l is false, s2 is returned

	INIT(x)
	Initial value of x

	INT(x)
	Largest integer less than or equal to x

	LOG10(x)
	[bookmark: OLE_LINK81][bookmark: OLE_LINK82]log10(x), logarithm to the base 10 of x; common logarithm of x

	LOGN(x)
	ln(x), natural logarithm of x

	MAX(x1, x2, …)
	[bookmark: OLE_LINK18][bookmark: OLE_LINK19]Maximum of x1, x2, …

	MEAN(x1, x2, …)
	Arithmetic mean of x1, x2, …

	MIN(x1, x2, …)
	Minimum of x1, x2, …

	MOD(m, n)
	Integer remainder when m is divided by n

	NOT l
	Logical negation of l, where l is a logical expression

	l1 OR l2
	Logical OR of l1 and l2, where l1and l2 are logical expressions

	PI
	Approximation of π = 3.14159…

	PULSE(a, t, i)

	Pulse of amount a first delivered at time t and at every time interval of length i afterwards

	ROUND(x)
	x rounded to the nearest integer

	SIN(r)
	sin(r), where r is an angle in radians

	SQRT(x)
	Square root of x

	[bookmark: OLE_LINK53]STEP(h, t)
	0 before time t and h for time ≥ t

	TAN(a)
	tan(a), where a is an angle in radians

	THEN
	In IF l THEN s1 ELSE s2, if l is true, s1 is executed

	TIME
	Model simulation's current time


	INIT, EXP, and TIME
Open the Berkeley Madonna file unconstrained and save a copy of the file under the name unconstrainedError. 
	The file models an unconstrained growth situation where the rate of change of the population, P, is dP/dt = 0.1P with an initial population of P0 = 100.  In Module 2.2 on “Unconstrained Growth,” we discovered the following analytical solution to this initial valued differential equation: P = 100e0.10t.  Suppose we wish to calculate and plot analytical population values along with the simulation population values.  If necessary, from the Flowchart menu, select Show Flowchart.  
[bookmark: OLE_LINK61][bookmark: OLE_LINK9][bookmark: OLE_LINK10][bookmark: OLE_LINK11][bookmark: OLE_LINK12][bookmark: OLE_LINK15]	In the flowchart, create a formula (sphere icon) with the name analytical_population to store the analytical solution for the population, P = 100e0.10t, at time t.  Because the analytically obtained solution uses the initial population and the growth rate, draw arcs from the reservoir population and the formula growth_rate to the new formula, analytical_population.  Double-click the latter to enter the equation for 100e0.10t.  We might want to run the simulation with various initial values of population instead of always using 100.  Thus, we do not want to type 100 in the equation for analytical_population.  Fortunately, Berkeley Madonna provides a function, INIT, to return the initial value of a reservoir, flow, or formula.  The software is not case sensitive, so we can use INIT or init.  After typing the name of the function and a left parenthesis, double-click on population in the Required Inputs menu and type a right parenthesis to obtain INIT(population).  After a multiplication symbol, *, we enter the Berkeley Madonna equivalent of e0.10t.  EXP is the Berkeley Madonna built-in exponential function.  Double-click on growth_rate from the Required Inputs menu to place the variable inside the parentheses for EXP.  The exponent is the product of growth_rate, which in this example has a value of 0.10, and the current time, which is the Berkeley Madonna built-in TIME.  
Quick Review Question 1	Give the Berkeley Madonna equation for analytical_population, which in mathematics is P0ert, where P0 is the initial population, r is the growth_rate, and t is the time.
ABS
[bookmark: OLE_LINK58][bookmark: OLE_LINK62][bookmark: OLE_LINK13][bookmark: OLE_LINK14][bookmark: OLE_LINK68]Module 5.2 on “Errors” defines relative error as correct – result/correct.  To have Berkeley Madonna calculate this error of the simulation population at every time step, first make a flowchart formula with the name relative_error and connect population and analytical_population to this new formula.  Then, double-click on the latter to enter an equation.  The Berkeley Madonna built-in ABS returns the absolute value of an expression.  Complete the formula.  Run the simulation generating a graph for population and analytical_population and a table for population, analytical_population, and relative_error.
Quick Review Question 2	Give the Berkeley Madonna formula for relative_error.
Sine and Cosine
[bookmark: OLE_LINK16][bookmark: OLE_LINK17]For the next example, save the downloaded file, unconstrained, as periodic, and open the new file.  
	Suppose we wish to illustrate a periodic growth whose rate is 5% at the beginning of the year, increases to 10% by the beginning of April, is 0% six months later, and returns to 5% with the new year (see Figure 2.4.1).  To model such periodicity, we can employ the trigonometric function sine or cosine, which are SIN and COS, respectively, in Berkeley Madonna.  	
Figure 2.4.1	Periodic growth rate
[image: 3]

	Module 8.2 with a “Function Tutorial” discusses trigonometric functions in greater detail.  In general, the graph in Figure 2.4.2 as the formula 

	a sin(2πt/p) + h

where t is the independent variable for time; a is the amplitude, or height above the horizontal line through the center of the graph; p is the period, or length on the horizontal axis before the graph starts to repeat; and h is the lowest height.
Figure 2.4.2	Graph of a sin(2πt/p) + h
[image: 3]

	Double-click on the formula growth_rate and enter the appropriate formula to obtain the graph for Figure 2.4.1.  Run the simulation generating a graph for population and a table for growth_rate and population.
Quick Review Question 3	Give the equation for growth_rate so that its periodic graph has amplitude 0.05, period 12 months, and starts at 0.05 as in Figure 2.4.1.
PULSE
[bookmark: OLE_LINK27][bookmark: OLE_LINK28][bookmark: OLE_LINK21][bookmark: OLE_LINK22]For the next example, save the downloaded file, unconstrained, as pulse, and open the new file.  
	Suppose the unconstrained growth of a colony of bacteria on a Petri dish is tempered by a researcher removing 50 bacteria every eight hours starting at hour 1.  For the model, we make the simplifying assumption that the scientist is able to extract a constant number of bacteria.  We can accomplish this task with the Berkeley Madonna function PULSE, which has the following format:

PULSE(amount, initial_time, interval)

[bookmark: OLE_LINK20]where amount is the amount that the function returns during a pulse, initial_time is the time of the first pulse, and interval is the length of time between pulses.  Thus, for our example, amount is 50; initial_time is 1; and interval is 8.  An interval value greater than the length of the simulation results in a one-time pulse.
[bookmark: OLE_LINK23][bookmark: OLE_LINK24][bookmark: OLE_LINK25][bookmark: OLE_LINK26]	In pulse, have a flow called removal coming out of population.  Create three formulas called amount_removed, init_removal_time, and frequency_of_removal; and connect each to the flow removal.  Enter a formula for removal and values for each of the formulas as described in the previous paragraph.  Run the simulation.  
Quick Review Question 4	Give the equation for the flow removal.
[bookmark: OLE_LINK69]Quick Review Question 5	Without changing amount_removed or init_removal_time, using the Berkeley Madonna  model, determine the largest value (as a multiple of DT = 0.25) of frequency_of_removal that will cause the population of bacteria to go to zero eventually, but not necessarily in 8 hours.  Use a slider for frequency_of_removal.
Logic
[bookmark: OLE_LINK42][bookmark: OLE_LINK43]For the next example, save the downloaded file, unconstrained, as logicIF, and open the new file.  
	Frequently, we want the computer to do one of two things based on a situation.  For instance, suppose a population of bacteria has a growth rate of 10% if its size is less than some threshold, such as 1000, but a growth rate of 5% for larger sizes. To model the situation, we use IF-THEN-ELSE.  The format of the combination of these elements is as follows:
IF condition THEN choice1 ELSE choice2

If logical expression condition is true, then the construct returns choice1; otherwise, the returned value is choice2.  Thus, the equation for growth_rate described above is as follows:

IF (population < threshold) THEN 0.1 ELSE 0.05

[bookmark: OLE_LINK29]Add a formula for threshold and arcs from threshold and population to growth_rate in the Berkeley Madonna model.  Change the equation for growth_rate as described and run the model.
Quick Review Question 6	Describe the appearance of the graph of population.

	The “less-than” symbol, <, in the condition of the IF is an example of a relational operator.  A relational operator is a symbol that we use to test the relationship between two expressions, such as the two variables population and threshold.  Table 2.4.2 lists the six relational operators in Berkeley Madonna.
Table 2.4.2	Berkeley Madonna's relational operators
Relational Operator		Meaning
=				equal to 
>				greater than 
<				less than
[bookmark: OLE_LINK103]<>				not equal to 
>=				greater than or equal to
<=				less than or equal to

Definition	A relational operator is a symbol that we use to test the relationship between two expressions.  The relational operators in Berkeley Madonna are = (equal to), > (greater than), < (less than), <> (not equal to), >= (greater than or equal to), and <= (less than or equal to).
Quick Review Question 7	Consider the following equation:
IF (population < threshold) THEN 0.1 ELSE 0.05

	Keeping population and threshold in the same order, write an equivalent equation to the expression than employs the >= symbol.  Implement your answer in the Berkeley Madonna model.
Logical Operators
[bookmark: OLE_LINK38][bookmark: OLE_LINK39]For the next example, save the downloaded file, unconstrained, as logicalAND, and open the new file.  
[bookmark: OLE_LINK30]	We use logical operators to combine or negate expressions containing relational operators.  For example, suppose when the number of bacteria is between 500 and 1000, the scientist refrigerates the Petri dish, which results in a lower growth rate (growth_rate_2 = 5%).  However, at room temperature, the growth rate returns to its initial value (growth_rate_1 = 10%).  To write this expression for growth, we employ the logical operator AND in conjunction with the relational operators < and >, as follows:

IF (500 < population) AND (population < 1000)
THEN growth_rate_2 * population 
ELSE growth_rate_1 * population

The compound condition, (500 < population) AND (population < 1000), is true only when both (500 < population) and (population < 1000) are both true.  In every other circumstance, the condition is false.  Table 2.4.3 summarizes this rule in a truth table with “T” and “F” indicating true and false, respectively. With p representing (500 < population) and q representing (population < 1000), we read the first line of this table as, “When p is false and q is false, then p AND q is false.”  Notice that the only way to get a true from an AND is for both (or all) conditions to be true.
Table 2.4.3	Truth table for p AND q
	p
	q
	p AND q
	Interpretation

	F
	F
	F
	false AND false is false

	F
	T
	F
	false AND true is false

	T
	F
	F
	true AND false is false

	T
	T
	T
	true AND true is true



[bookmark: OLE_LINK31]	In logicalAND, change the name of growth_rate to growth_rate_1.  Add another formula, growth_rate_2, with constant value 0.05 and connect it to growth.  Adjust the equation for growth as above to employ the rate growth_rate_2, when the population is between 500 and 1000.  Run the simulation and observe the effect on the graph and table values.
[bookmark: OLE_LINK32][bookmark: OLE_LINK33]Quick Review Question 8	In the equation for growth, change the condition “(500 < population) AND (population < 1000)” to “(500 < population < 1000)”, which as we will see is incorrect.  Run the simulation.  By observing the values in the table, determine which growth rate, growth_rate_1 = 0.1 or growth_rate_2 = 0.05, Berkeley Madonna is using.  Although in mathematics we can have a condition such as 500 < x < 1000, in Berkeley Madonna we must use AND between the two relational expressions.  Correct the equation for growth.

	When at least one of two conditions must be true in order for the compound condition to be true, we use the logical operator OR.   For example, the compound condition (population <= 500) OR (1000 <= population) is true in every situation, except when both (population <= 500) and (1000 <= population) are false; that is, when population is exclusively between 500 and 1000.  Table 2.4.4 has the truth table for p OR q.  We read the second line of the table as, “If p is false or q is true, then p OR q is true.”  As that and the remaining lines reveal, if p or q or both are true, then p OR q is true.  
Table 2.4.4	Truth table for p OR q
	p
	q
	p OR q
	Interpretation

	F
	F
	F
	false OR false  is false

	F
	T
	T
	false OR true is true 

	T
	F
	T
	true OR false is true 

	T
	T
	T
	true OR true is true 



[bookmark: OLE_LINK59]Quick Review Question 9	Save logicalAND as logicalOR, and open the new file.  In logicalOR, change the equation for growth to have the condition (population <= 500) OR (1000 <= population) for the IF.  Change the remainder of the equation to obtain equivalent results to the above simulation, where the growth rate is 5% for populations between 500 and 1000 and 10% otherwise.  Give the IF THEN ELSE statement.

	A third logical operator, NOT, obeys Table 2.4.5.  As the table indicates, this operator reverses the truth value of the expression to its immediate right.  We can accomplish the same result by changing an expression so that it uses the inverse relational operator.  For example, 

IF (NOT(population < threshold))

is equivalent to

IF (population >= threshold)

In many cases, this latter notation is preferable because it is simpler.
Table 2.4.5	Truth table for NOT p

	p
	NOT p
	Interpretation

	F
	T
	NOT false is true

	T
	F
	NOT true is false 



Definition	A logical operator is a symbol that we use to combine or negate expressions that are true or false.  The logical operators in Berkeley Madonna are NOT, AND, and OR.

[bookmark: OLE_LINK60]Quick Review Question 10	Save logicalAND as logicalNOT, and open the new file.  In logicalNOT, alter the growth equation to employ one NOT as indicated with adjustments to the relational operators and the logical operator:
IF NOT ((500 		 population) 		 (population 		 1000))
THEN growth_rate_2 * population 
ELSE growth_rate_1 * population

	The resulting simulation should produce results equivalent to those of logicalAND.
DT
[bookmark: OLE_LINK63][bookmark: OLE_LINK46][bookmark: OLE_LINK47]For the next example, save the file pulse as dt, and open this new file.  
	In the parameters window, we specify the interval for the time step, DT.  Sometimes it is useful to employ this constant in a model.  For example, suppose each time the population of bacteria reaches 200, a scientist harvests 100 of the bacteria for an experiment.  In file dt, delete the formulas connected to removal and have an arc from population to removal.
Quick Review Question 11	
a.	Using IF-THEN-ELSE, give the equation for removal that accomplishes the following:  If the population is greater than 200, then return 100, else return 0.
[bookmark: OLE_LINK50][bookmark: OLE_LINK51][bookmark: OLE_LINK54][bookmark: OLE_LINK55][bookmark: OLE_LINK72]b.	Have columns for population, growth, and removal in the table.  With DT = 0.25, run the simulation.  Give the values for time, population, growth, and removal when the population first exceeds 200.  
c.	Give the values for time and population at the next time step.
d.	For the values from Part b, compute population + growth – removal.  Does the result equal the population from Part c?
[bookmark: OLE_LINK56][bookmark: OLE_LINK57]e.	As indicated in section “Difference Equation” of Module 2.2 on “Unconstrained Growth,” growth is multiplied by DT before being added to population.  Similarly, at each time step, removal * DT, not just removal, is subtracted from population.  Give the difference equation for population(t).  
f.	For the values in Part b, compute population(t).  Does this result agree with the value of population from Part c?
g.	Suppose when the population exceeds 200, we wish to remove 100 bacteria, not 25.  To cancel out the effect of Berkeley Madonna's multiplication by DT, we divide 100 by DT in the equation for growth.  Give the resulting IF-THEN-ELSE equation.  Implement this change and run the simulation, observing the graph and table.
h.	Give the values for time, population, growth, and removal when the population first exceeds 200.
i.	Give the values for time and population at the next time step.
j.	For the values in Part h, compute population(t).  Does this result agree with the value of population from Part i? 
Comparative Graphs
[bookmark: OLE_LINK67]For the next example, save the downloaded file, unconstrained, as comparative, and open this new file.  
[bookmark: OLE_LINK83]	Suppose we wish to compare the effect of unconstrained growth on population using various growth rates, such as 0.10, 0.11, 0.12, and 0.13.  From the Parameters menu, select Batch Runs... or use the indicated shortcut.  From the dropdown menu as in Figure 2.4.3, select parameter growth_rate and indicate 4 runs with initial value 0.10 and final value 0.13.  Berkeley Madonna computes the values for growth_rate as 0.10, 0.11, 0.12, and 0.13.  Click OK.  Indicate to show legends on the graph.  The resulting graph and the end of the table are as in Figure 2.4.4 and Table 2.4.6, respectively.  Comparison of the results reveals the dramatic impact on the population of even a 1% increase in the growth rate.
Figure 2.4.3	Batch-runs dropdown menu
[image: ]
Figure 2.4.4	Graph for comparative simulation
[image: ]
Table 2.4.6	End of table for comparative simulation
	Time
	population: 1 (0.10)
	population: 2 (0.11)
	population: 3 (0.12)
	population: 4 (0.13)

	…
	…
	…
	…
	...

	38.75
	4,594.09
	6,701.68
	9,767.19
	14,222.0

	39.00
	4,708.94
	6,885.98
	10,060.2
	14,684.2

	39.25
	4,826.66
	7,075.34
	10,362.0
	15,161.4

	39.50
	4,947.33
	7,269.91
	10,672.9
	15,654.1

	39.75
	5,071.01
	7,469.84
	10,993.1
	16,162.9

	40.00
	5,197.79
	7,675.26
	11,322.9
	16,688.2


Quick Review Question 12	Lock the current graph/table.  Generate a comparative graph and table where the initial populations are 100, 200, 300, 400, and 500 and the growth rate is 0.10.  Give the populations for time = 40 hours, rounded to the nearest whole number.

	An alternative way to display plots for different simulations together is to click the Overlay Plots icon ([image: ]) toward the top left of a graph window.  Until deselected, all plots appear in the same graph window.  However, from the Graph menu, we can Discard Last Run or Discard All Runs.
Graphical Input
[bookmark: OLE_LINK37][bookmark: OLE_LINK40]For the next example, save the downloaded file, unconstrained, as graphInput, and open this new file.  
[bookmark: OLE_LINK3][bookmark: OLE_LINK4]	Sometimes we have a concept of the trend of a formula or flow without knowing an expression to represent the equation.  For example, perhaps we have experimental data that we wish to use in a model.  In this case, we can employ graphical input.  Suppose we know that growth_rate has a certain shape that depends on the time.  Create another formula component called growth_rate_times_1000 that connects to growth_rate.  Change the equation of growth_rate to be 0.001 * growth_rate_times_1000, so that growth_rate is one-thousandth of growth_rate_times_1000.  Double-click growth_rate_times_1000; in place of the equation, type TIME, the independent variable; and click Create Graph button to the right of the pop-up menu.  Figure 2.4.5 shows the resulting graph input dialog window.
Figure 2.4.5	Default graph input dialog window
[image: ]

[bookmark: OLE_LINK35][bookmark: OLE_LINK36][bookmark: OLE_LINK65][bookmark: OLE_LINK66]	The x values represent TIME and the y values growth_rate_times_1000.  We can click and drag on the line to trace a desired graph.  For example, suppose the growth rate starts close to 0.1, decreases to almost 0, and then increases again.  Thus, growth_rate_times_1000, which is 1000 times the growth rate, should start at about 100. By clicking and dragging on the graph, enter values for growth_rate_times_1000 related to time similar to Figure 2.4.6.  Because we are running the simulation only to time 40, values for later times are irrelevant for this example.  By clicking OK, get out of the graph input window and then the equation window for growth_rate_times_1000.  Run the simulation.  The resulting graphs of population and growth_rate versus time should appear similar to Figure 2.4.7.  Save your work.
[bookmark: OLE_LINK70][bookmark: OLE_LINK71]Figure 2.4.6	Graph input dialog window for growth_rate_times_1000
[image: ]
Figure 2.4.7	Resulting graphs from growth_rate_times_1000 input graph in Figure 2.4.6
[image: ]
[bookmark: OLE_LINK73][bookmark: OLE_LINK74]Quick Review Question 13	Save the model graphInput as graphInputPop.  Rename growth_rate_times_1000 as growth_rate_times_100, and change the equation for growth_rate accordingly.  Add another formula component, population_div_100, which is population divided by 100.  Have arcs from population to population_div_100 and from population_div_100 to growth_rate_times_100. Double-click growth_rate_times_100.  
[bookmark: _GoBack]a.	What do we type in the equation box for generating graphical input for growth_rate_times_100 versus population, not time?  
b.	Click the Delete Graph button.  What do we do to view the graph input dialog window?
[bookmark: OLE_LINK75][bookmark: OLE_LINK76]c.	With growth_rate_times_100 varying from 0 to 100, between what values can growth_rate vary? 
[bookmark: OLE_LINK41][bookmark: OLE_LINK44]d.	With population_div_100 varying from 0 to 100, between what values can population vary?
e.	For population_div_100 sizes less than 25, corresponding to populations less than 2500, have growth_rate_times_100 be 20, or a growth rate of 20%.  For population_div_100 values from 25 to 65, have growth_rate_times_100 decrease linearly from 20 to 0.  For population_div_100 values greater than 65, have growth_rate_times_100 be 0.  Describe the shape of the population graph and explain the results.
f.	Describe the shape of the growth_rate graph and explain the results.  Save your work.

[bookmark: OLE_LINK77][bookmark: OLE_LINK78]	Save the model graphInput as graphInputNoFlowchart.  
[bookmark: OLE_LINK79][bookmark: OLE_LINK80]	For more precise input with greater options, we can type coordinates of the graph into the equation window.  From the Model menu, select Discard Flowchart so that we can edit equations from that window.  If not visible, open the equations window.  Note that Berkeley Madonna represented our graphical input for growth_rate_times_1000 as graph(TIME) followed by a list of 21 coordinates.  Delete “0.001 * growth_rate_times_1000” and “growth_rate_times_1000 =,” so that we assign graph(TIME) to growth_rate.  Change the coordinates to be as follows:  (0, 0.1), (4, 0.1), (8, 0.095), (12, 0.08), (16, 0.034), (20, 0.012), (24, 0.003), (28, 0.003), (32, 0.003), (36, 0.015), (40, 0.04).  Notice that with text input, we can eliminate growth_rate_times_1000 and can have coordinate values for TIME other than multiples of 5.  Run the simulation.
Quick Review Question 14	Give the maximum population and when it occurs.
Conveyor
The material in this section is useful for Project 4 in Module 4.4 on “Modeling a Persistent Plague: Malaria” and could be used for several projects in Module 4.3 on “Modeling the Spread of SARS— Containing Emerging Disease” and in Chapter 7.
[bookmark: OLE_LINK49]
[bookmark: OLE_LINK106]Sometimes in a model we wish to indicate that each input amount of material remains in that reservoir for a fixed amount of time before exiting.  Thus, the reservoir is a conveyor that processes each discrete input batch for a certain amount of time.  For example, such a conveyor could model a group of people infected by a virus that has an incubation period of three days.  
	As another example, with such a conveyor we could model the blood supply at a new blood bank, where processing and screening of a donation takes one week.  Suppose input consists of 100 pints per day to the blood bank and the transit time for the conveyor processing is 7 days.  Output flows from processing, through output, to reservoir total_out.  A diagram for such a configuration in the system dynamics tool STELLA appears in Figure 2.4.8.
Figure 2.4.8	STELLA model with conveyor processing
[image: Picture 1]
[bookmark: OLE_LINK48][bookmark: OLE_LINK64]	Berkeley Madonna does not have a flowchart component for a conveyor.  However, we can enter discrete equations, which the software can use to perform a simulation.  Start a new model, and save your work in a file called conveyor.  In the equations window, type equations similar to those that Berkeley Madonna previously automatically generated.  We begin by specifying the following integration method, start and stop times, and step size in the parameters window:  

Euler’s Method integration technique
STARTTIME = 0
STOPTIME = 12
DT = 0.25

	Assigning CONVEYOR(input_amount, transit_time) to a conveyor, such as processing, indicates that every unit of time input_amount enters the conveyor and remains in the conveyor for transit_time units of time.   The value of an output flow, such as output, is OUTFLOW of the conveyor.  Thus, type the following segment of discrete equations in the Globals window, whose tab is at the top of the center panel:

input = 100
processing = CONVEYOR(input, 7)
output = OUTFLOW(processing)
INIT total_out = 0
d/dt (total_out) = + output

	Generate a graph for processing and a table containing processing and total_out.  Run the simulation, and save again.  We note that processing builds steadily for the first 7 days, increasing by 100 pints per day.  With DT being 0.25, processing is actually increasing by 25 pints per quarter of a day i.e., 25 pints each 6 hours for the first week.  During that time, total_out remains 0.  Then, at 7.25 days, the 25 pints that entered the conveyor processing at time 0.25 days leave processing and go into total_out.  From then on, the quantity in processing is in a steady state with the same number of pints entering as leaving at any time step.
Quick Review Question 15	Give the values of each of the following at time 12 days:
a.	processing
b.	total_out
Projects
For additional projects, see Module 7.7 on “Cardiovascular System—A Pressure-Filled Model” and Module 7.12 on “Mercury Pollution—Getting on Our Nerves.”
Reference
Berkeley Madonna.  1017.  http://www.berkeleymadonna.com (Accessed August 25, 2017)
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