11_4QRQNetLogo		7
11.4 Modeling an "Able" Invader—the "Cane" Toad
NetLogo Quick Review Questions
Introduction to Computational Science:
[bookmark: _GoBack]Modeling and Simulation for the Sciences, 2nd Edition
Angela B. Shiflet and George W. Shiflet
Wofford College
© 2014 by Princeton University Press

Compose all the following answers in NetLogo:
Phase 0: Initialization
Quick Review Question 1	Declare a breed of toads. Start the function initToads to set the shape of toads to be "toad".
 Quick Review Question 2	Declare that toads own energy, water, state, numTimeSteps, lastx, and lasty. Write a statement for initToads to create NUM_TOADS number of initialized toad agents.
Quick Review Question 3	Suppose PERCENT_AWPS is 0.3, PERCENT_AWPS_FENCED is 25, and PERCENT_MOIST_AREAS is 0.1 and the grid is 100-by-40 cells. On the average, after the initialization phase how many of the following would we expect on the grid:
a.	Awp agents before initialization of FencedAwp agents
b.	FencedAwp agents
c.	Awp agents after initialization of FencedAwp agents
d.	MoistArea agents
e.	If there are 5 Awp, 2 FencedAwp, and 3 MoistArea agents, none of which are next to a border or each other, how many AwpAdjacent agents are there?
Quick Review Question 4	Assume SIDE is the length of one side of the square landscape. Suppose the function initMoisture calls initDesert and initAwps.
a.	Write initFood to initialize the food value for each patch.
b.	Write initDesert, as follows: If a patch is in the interior, make its class be DESERT and have its color be grey and its scale-color be proportional to its amount of food, food, on a scale from (FOOD_CELL * 2) down to 0. Otherwise, make its class be BORDER and its color be grey – 3. For a patch on the east border, set its plabel to "-". For a patch on one of the other borders, set its plabel to "!".
c.	Write initAwps to initialize the AWPs, fenced AWPs, and surrounding areas.
Phase 1: Consumption
Quick Review Question 5	Suppose AMT_EAT = 0.01 and FRACTION_WATER = 0.6. Assume a toad is on top of a desert cell. Give the values of a toad's energy and water and a desert cell's food after execution of eat and updateFood for each of the following situations:
a.	energy = 0.9, water = 0.8, and availableFood = 0.03
b.	energy = 0.9, water = 0.8, and availableFood = 0.005
c.	energy = 0.999, water = 0.8, and availableFood = 0.03
d.	energy = 0.9, water = 0.999, and availableFood = 0.03
Quick Review Question 6	Write the following consumption functions:
a.	Toad function toadMayEat
b.	Toad function eat, which also updates the amount of food in the cell
c.	Toad function toadMayDrink
d.	Toad function drink
Phase 2: Movement
Quick Review Question 7	Write the toad function toadMove.
Quick Review Question 8	Write the following functions related to movement for moisture:
a.	thirsty
b.	lookForMoisture
c.	moveW
d.	useWaterEnergyHopping
Quick Review Question 9	Write the Toad method lookForFood.
Quick Review Question 10	Write the Toad functions hopForFun. Note that hopHere is implemented with useWaterEnergyHopping.
Phase 3: Complete Cycle
Quick Review Question 11	Write the following:
a.	changeCounts
b.	checkTerminate implemented as terminate?, a function that returns true or false depending on whether the simulation should terminate or not
c.	A statement in go that terminates the simulation if terminate? returns true
Answers to Quick Review Questions
1.	
breed [toads toad]

to initToads
 set-default-shape toads "toad"

2.
toads-own [energy water state numTimeSteps lastx lasty]

 create-toads NUM_TOADS [
 set size 1.5
 set state ALIVE
 set lastx -1
 set lasty -1
 set energy min list max list 0 random-normal MEAN_ENERGY STD_ENERGY 1
 set water min list max list 0 random-normal MEAN_WATER STD_WATER 1
 set numTimeSteps 0
 set color cyan
 set xcor SIDE - 1
 set ycor SIDE - 1 - random (SIDE * 2 - 1)
 set heading -90
]

3.	a.	12 = (0.003)(100)(40)
b.	3 = (0.25)(12), where 12 is obtained from Part a
c.	9 = 12 - 3
d.	A little less than 4 = (0.001)(100)(40), because immediately before initialization of moist areas, some of the (100)(40) = 4000 Desert agents have likely been converted to Awp and/or FencedAwp agents
e.	56 = (8)(5 + 2) because each Awp and FencedAwp agent is surrounded by 8 AwpAdjacent agents.

4.	a.
to initFood
 ask patches [
 ifelse (max list (abs pxcor) (abs pycor) = SIDE)
 [set food -1
 set moisture -1]
 [set food FOOD_CELL]
]
end
4.	b.
to initDesert
 ask patches [
 ifelse ((abs pxcor) < SIDE and (abs pycor) < SIDE) [
 set class DESERT
 set pcolor scale-color grey food (MAX_FOOD * 2) 0
			;Have the color of the patch reflect the amount of food
] [
 set class BORDER
 set pcolor grey - 3
 ifelse ((abs pycor) = SIDE)
 [set plabel "-"] [set plabel "|"]
]
]
end

4.	c.
to initAwps
 ask patches [
 if ((abs pxcor) < SIDE - 2 and (abs pycor) < SIDE - 2 and
 8 = count neighbors with [class = DESERT] and
 random-float 1 < (PERCENT_AWPS / 100)) [
 set moisture AWP_MOISTURE
 ifelse (random-float 1 < (PERCENT_AWPS_FENCED / 100))
 [set class FENCED_AWP
 set pcolor black
 set plabel "♦ "]
 [set class AWP
 set pcolor black]
 ask neighbors [
 set moisture AWP_R1
 set class AWP_ADJACENT
 set plabel-color grey
 set pcolor black
 set plabel "#"
]
 ask neighbors [
 ask neighbors with [class = DESERT] [
 set moisture AWP_R2
 set class AWP_OVER2
 set pcolor white
 set plabel-color black
 set plabel "//"
]
]
]
]
end

5.	a.	energy = 0.91, water = 0.806, and food = 0.02 because amtEat = 0.01, so energy = 0.9 + 0.01, water = 0.8 + 0.6*0.01, and food = 0.03 - 0.01
b.	energy = 0.905, water = 0.803, and food = 0.0 because amtEat = availableFood = 0.005, so energy = 0.9 + 0.005, water = 0.8 + 0.6*0.005, and food= 0.005 - 0.005
c.	energy = 1.0, water = 0.8006, and food = 0.029 because amtEat = 1 - energy = 0.001, so energy = 0.9 + 0.001, water = 0.8 + 0.6*0.001, and food = 0.03 - 0.001
d.	energy = 0.91, water = 1.0, and food = 0.02 because amtEat = 0.01, so energy = 0.9 + 0.01, water = the minimum of 0.999 + 0.6*0.01 = 1.005 and 1.0, and food = 0.03 - 0.01
6.	a.
to toadMayEat
 ask toads with [state = ALIVE] [
 if (energy < WOULD_LIKE_EAT)
 [eat]
]
end

6.	b.	Note that availableFood is just food.

to eat
 let amtEat min (list AMT_EAT food (1 - energy))
 set energy energy + amtEat
 set water min list (water + FRACTION_WATER * amtEat) 1.0
 set food food - amtEat
end

6.	c.	
to toadMayDrink
 ask toads with [state = ALIVE] [
 if (moisture >= AWP_MOISTURE and water < WOULD_LIKE_DRINK)
 [drink]
]
end
6.	d.
to drink
 set water min list (AMT_DRINK + water) 1
end

7.	
to toadMove
 ask toads with [state = ALIVE] [
 ifelse (water < WOULD_LIKE_DRINK) [
 thirsty
][
 ifelse (energy < WOULD_LIKE_EAT) [
 lookForFood
] [
 ifelse (random-float 1 < MAY_HOP) [
 hopForFun
] [
 stayHere
]
]
]
]
end

8.	a.	Note that stayHere is implemented with useWaterEnergySitting.

to thirsty
 ifelse (moisture >= AMT_AWP) [
 useWaterEnergySitting
][
 ifelse (moisture >= 0) [
 lookForMoisture
][
 ifelse (plabel = "|") and ((count turtles-at -1 0) = 0) [
 moveW
][
 useWaterEnergySitting
]
]
]
end

8.	b.
to lookForMoisture
 let matLst getNbrsLst
 let next max-one-of matLst [moisture]
 face next
 move-to next
 useWaterEnergyHopping
end

; Function to return a list of neighbors not including fenced AWPs
; and borders
to-report getNbrsLst
 let matLst neighbors4 with [class != FENCED_AWP and class != BORDER]
 report matLst
end

8.	c.
to moveW
 set pxcor (pxcor - 1)
 useWaterEnergyHopping
end

8.	d.
to useWaterEnergyHopping
 if moisture < AMT_AWP [set water water - WATER_HOPPING]
 set energy energy - ENERGY_HOPPING
end

9.	
to lookForFood
 set lastx pxcor
 set lasty pycor
 let matLst (patch-set getNbrsLst patch-here)
 let next max-one-of matLst [food]
 face next
 move-to next
 ifelse [pxcor] of next = lastx and [pycor] of next = lasty [
 useWaterEnergySitting
][
 useWaterEnergyHopping
]
end

10.	
to hopForFun
 let loc one-of getNbrsLst
 face loc
 move-to loc
 useWaterEnergyHopping
end

11.	a.
to changeCounts
 ask toads with [state = ALIVE] [
 ifelse water < DESICCATE or energy < STARVE [
 set state DEAD
 move-to patch (SIDE + 1) (SIDE + 1)
] [
 if xcor = 1 - SIDE [
 set state MIGRATED
]
]
]
end

11.	b.
to-report terminate?
 report (count toads with [state = ALIVE] < 1)
end

11.	c.
if terminate? [stop]

