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Getting familiar with R 

Follow the rest of that R Computational Toolbox tutorial, RCTTutorial1, answering all 
quick-review questions as you go. That tutorial walks you through the basics of R 
programming, including variables, vectors, functions, control structures, and everything 
else you need to know to get off the ground. The rest of this System Dynamics tutorial 
presupposes that you have completed that Computational Toolbox tutorial.  
 

Using R for System Dynamics Problems 

As described in the book, a System Dynamics problem presents itself as a complex 
interaction of different variables over time. Our goal in understanding such a system is to 
formulate a model of it and then simulate the model. The results of the simulation will 
give us a good idea about how the complex system will act over time when it is given 
certain initial conditions. Even simple looking models are often not possible to solve 
analytically, and hence the simulation tells us something that is not feasible to determine 
any other way.  

There are two general approaches to creating such models and simulations. One 
approach is to use a specialized System Dynamics tool (such as Berkley Madonna, 
Vensim, or STELLA) that lets us draw diagrams of system components and then 
interprets our pictorial syntax to perform the simulation. The other approach is to use a 
general-purpose programming language (such as R, Python, or Java) that lets us write the 
simulation code directly, using variables, functions, and loops. There are advantages to 
both approaches. One advantage to using a specialized tool is that learning to draw 
diagrams can be a somewhat easier task for beginners than writing code. One advantage 
to using a general-purpose programming language is that it is more generic and flexible, 
giving us more freedom to control our simulation and refine it in ways that a System 
Dynamics tool designer might not have envisioned. We can also gain more insight into 
the details of the simulation, since all aspects of it are visible to us and modifiable, rather 
than being hidden behind the simplified diagrammatic elements a System Dynamics tool 
provides us with.  

This tutorial is about using R — a general-purpose programming language — to write 
simulation programs to solve System Dynamics problems. Following this approach will 
give you valuable skills that enable you to go beyond what a specific tool designer may 
have equipped you with and to tackle a large variety of computational science problems 
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(System Dynamics or otherwise) in the same way. The cost for doing this is that we need 
to take care of some of the details ourselves that a System Dynamics tool might have done 
for us. It’s kind of like getting the extra control and performance that a stick-shift 
automobile gives the driver, rather than the simplicity yet limited nature of an automatic 
transmission. It’s a little steeper learning curve, but once you learn to drive it, you can 
drive this car anywhere — you can’t solve a cellular automata problem or simulate a 
queueing system in Berkley Madonna, but you can do both and much more in R.  

Writing System Dynamics Simulation Programs: Components 

The main task in writing an R simulation is to turn a system dynamics diagram (like 
Figure 2.5.1 in the book) into a running program. Hence this tutorial will concentrate on 
translating such diagrams into code.  

First, some basic terminology and concepts about these system dynamics diagrams 
(also sometimes called relationship diagrams, or stock-and-flow diagrams):  

 
• stock variable.  

These are represented on the diagram by boxes. A stock variable is typically 
something that accumulates as time goes on: it is a quantity that goes up or down in 
value, and we want to track how it changes over time. For this reason, we will 
normally use a vector to represent it, so that its value at each moment in time can be 
preserved.  

• derived stock variable.  
These are represented on the diagram by any white circle that has an incoming arrow 
from a box (or from another derived stock variable). If a white circle has an 
incoming arrow from a box, then it is essentially another stock variable: we are 
interested in tracking how it accumulates or decreases over time. The only way in 
which it differs from a box is that its value is usually based on a simple calculation 
from a box. Hence, we can give our main attention to tracking the box’s value as it 
changes throughout the simulation and then make a simple conversion of those 
values to obtain the derived stock variable’s values. For the same reason as above, a 
derived stock variable will normally be a vector of values.  

• (ordinary) variable.  
These are represented on the diagram by white circles that do not have incoming 
arrows from boxes (or from other derived stock variables). Each one will correspond 
to a scalar variable in the program. Some of these might have constant (unchanging) 
values, while others will represent quantities that change over time. For each of 
them, however, the program only needs to keep track of a single “current” value as 
the simulation progresses, not a whole array of values. Hence we will represent it in 
our simulation program as a scalar.  

• flow.  
Finally, a flow is depicted on the diagram by a gray oval. It represents a quantity 
whose value will change over time, and which will influence the value of some stock 
variable. Though it is a scalar, it is a dynamic (changing) quantity, and hence will be 
continually computed in the main loop of the simulation in order to help properly 
calculate the values of the stock variable it influences.  

Quick Review Question 1 Consider Figure 2.5.1 of the book. Which of the symbols in 
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the figure correspond to stock variables? Ordinary variables? Derived stock variables? 
Flows?  
 

Writing System Dynamics Simulation Programs: Outline of Basic Procedure 
The basic idea behind a computational simulation is to run through a loop a certain 
number of times, each time simulating one “tick” on a virtual clock. In other words, each 
time through the loop represents a (short) period of time, during which the important 
characteristics of the system (stored in program variables) may change. Often we wish to 
keep track of a particular variable’s values over time, so that when the simulation is over 
we can look back and see its general trend as the simulation progressed. This is an ideal 
use for vectors (arrays) since they can store multiple, successive values at once.  

To write an R program to simulate a system depicted in a stock-flow diagram, follow 
this general procedure:  

 
1. Identify the circles with no incoming arrows at all. If a circle represents a constant 

(unchanging) value, then create a program variable to represent it. (Be careful of 
units.)  

2. Identify all the circles whose only incoming arrows are from the circles already 
defined as variables in your program. Create a variable to represent each one, using a 
formula. (Be careful of units.) Repeat this step until the only circles left have 
something besides a circle pointing to them.  

3. Create a vector (array) for each stock variable (box). Set the first value of this vector 
to its initial condition (i.e., its value when the simulation begins).  

4. Run through the simulation loop for the specified total time and time increment. Each 
time through the loop:  

a. Determine the (temporary) values of any flows and remaining ordinary 
variable(s). Depending on the nature of the circle/oval, this could be (a) an 
equation based on current values of other circle(s) and/or stock variables, (b) a 
special value based on the current time (for instance, a “pulse” variable that takes 
on certain values at specific “clock ticks”) or other things.  

b. Set the next value for each vector to its new value on the next clock tick. 

5. For any derived stock variable that has not been defined yet, use a formula to create 
it based on its incoming arrows. Note that since at least one of these incoming 
arrows is from a stock variable (which is a vector), this circle’s variable will also be 
a vector.  

6. Finally, plot any vector(s) of interest.  

Example: Drug Dosage (Single-Dose) 

Let’s follow this procedure for a specific example. From Module 2.5, "Drug Dosage," 
read sections "Introduction" and "One-Compartment Model of Single Dose;" then look 
carefully at the diagram describing the drug dosage system in Figure 2.5.1. Notice that 
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there are six elements in this diagram. One of them — “aspirin in plasma” — is a stock 
variable. Three of them — “half life,” “plasma volume,” and “elimination constant” — 
are ordinary variables. The first two of these three are ordinary variables because they 
have no incoming arrows at all. The last of the three ("elimination constant") is also an 
ordinary variable because it has no incoming arrow from a box, only from another circle. 
One element — “elimination” — is a flow. Finally, “plasma concentration” is a derived 
stock variable because it has an incoming arrow from another box variable.  

Translating this into an R simulation program is a combination of following the 
outlined procedure, and using our heads. We begin:  

 
1. Identify the circles with no incoming arrows at all. If a circle represents a constant 

(unchanging) value, then create a program variable to represent it. (Be careful of 
units.)  

The circles with no incoming arrows are “half life” and “plasma volume.” From the 
problem description, we realize that both of these are simple constants: 3.2 hours, 
and 3000 ml, respectively. Hence, at the top of our R program, we will define these:  

halfLife = 3.2        # hr  
plasmaVolume = 3000   # ml  
 

(Note that we have added small comments to the right of each line, documenting the 
units that the variable is in. This is a good practice to get into, since making incorrect 
unit conversions or assumptions is a common error.)  

2. Identify all the circles whose only incoming arrows are from the circles already 
defined as program variables. Create a variable to represent each one, using a 
formula. (Be careful of units.) Repeat this step until the only circles left have 
something besides a circle pointing to them.  

We have one circle whose only incoming arrow is from a previously defined 
variable: elimination constant. Hence, following the formula given in Equation Set 
2.5.1, we write:  

eliminationConstant = -log(0.5)/halfLife   # 1/h  
 

Recall that in R, log() is the function to perform a natural logarithm. Note the 
comment “1/h” at the end of this line; this indicates that the elimination constant is 
in the units of “per hours.”  

3. Create a vector (array) for each stock variable (box). Set the first value of this vector 
to its initial condition (i.e., its value when the simulation begins.)  

We have one stock variable, so we create a vector for it:  

aspirinInPlasma = vector()  
 

Then, we initialize the first value of that vector to be its value at the start of the 
simulation:  

aspirinInPlasma[1] = 2 * 325 * 1000   # ug  
 



RSD Tutorial 1 5 
These two lines of code create a vector called aspirinInPlasma, which will hold all 
the values over time as the simulation runs. Each of the values in this vector will 
have units of  µg (micrograms). 

4. Run through the simulation loop for the specified total time and time increment.  

We need to decide two basic things about our simulation: (1) how long (in simulated 
time) will it run for? (2) how much simulated time will elapse between each virtual 
“tick of the clock?” These two choices are rather arbitrary at this point, but they 
affect the amount of memory your program requires as it runs, and ultimately, its 
speed. For now, we’ll simulate 8 hours of the patient’s body, and set our 
“granularity” to five minutes:  

simulationHours = 8 # h 
deltaX = 5/60       # h 
x = seq(0,simulationHours,deltaX)  
 

The variable deltaX (written mathematically as Dx) is our granularity, set to 5 
minutes. The x values in this vector mean that every iteration through our loop 
represents five minutes of time. Put another way, we will be recomputing the 
concentration of aspirin in the patient’s blood every five minutes. We now write the 
loop itself:  

for (i in 2:length(x)) {  
 

This line needs some explanation. First, it establishes a variable called i whose value 
will change each time through the loop. It will change to be the successive values in 
the vector specified after the word “in,” which begins at 2, and goes up to one 
greater than the number of clock ticks in the simulation. With the values mentioned 
above, this works out to be 2 through 97. This is because our simulation will run for 
96 clock ticks of 5 minutes each, for a total of 480 minutes, or 8 hours. Note that 

the variable i will take on values 2, 3, 4, ..., 97. It will not have values h, h, 

h, ..., h. The latter is the job of the elements of the x vector, not i variable. i 
does not represent a time value, but simply an iteration number, and a vector index. 
The sequence 5, 10, 15, ... does represent the time (in minutes) corresponding to 
each point of the simulation: the first iteration through the loop, when i = 2, 
represents the time 5 minutes; when i = 3, the time is 10 minutes; and so on.  

The reason we start our loop with i equal to 2 is that we have already set up the 
initial condition aspirinInPlasma[1] = 2 * 325 * 1000. In the loop, then, we need 
to begin by computing aspirinInPlasma[2] based on aspirinInPlasma[1], then 
aspirinInPlasma[3] based on aspirinInPlasma[2], and so forth. Clearly, we need 
to begin the process with element number 2.  

Quick Review Question 2 Suppose simulationHours had the value 40 hours and 
deltaX had the value 10/60 hours (10 minutes).  

 

5
60

10
60

15
60

480
60



RSD Tutorial 1 6 
a. How many times would the loop body be executed?  

b. What would the value of i be for each of those iterations?  

c. What would each value of the x vector be?  

d. What value of time (in minutes) would each iteration represent?  

e. What value of time (in hours) would each iteration represent?  

Incidentally, converting back-and-forth between i (the index value into the vector) 
and x (the actual time value) is so common and useful that it’s a good idea to define 
a pair of functions at the top of our file to convert each way:  

xtoi = function(x) x/deltaX + 1  
itox = function(i) (i-1)*deltaX 
  

This isn’t strictly necessary, but it can make life easier, since there are times when 
we’ll want to know what time value a particular vector element corresponds to, and 
vice versa.  

Now we move on to the body of the loop.  

Each time through the loop:  

a. Determine the (temporary) values of any flows and remaining ordinary 
variable(s). Depending on the nature of the circle/oval, this could be (a) an 
equation based on current values of other circle(s) and/or stock variables, (b) a 
special value based on the current time (for instance, a “pulse” variable that takes 
on certain values at specific clock ticks) or other things.  

We have only one flow: “elimination.” (Recall that “plasma concentration” is a 
derived stock variable.) Hence, inside the body of the loop, we compute its value:  

    elimination =  
        (eliminationConstant * aspirinInPlasma[i-1]) * deltaX  
 

Consider this line of code carefully. It uses the formula given in Equation Set 
2.5.1, with a couple of twists. First, we are computing the elimination amount at 
step i of the simulation. This requires using the amount of aspirin present in the 
plasma at the previous iteration, which is why we use i-1 inside the “[]” symbols 
after the vector name. This is the common pattern of computing a new value 
based on a previous value. Second, we multiply by the time increment because 
each step in the iteration represents a certain amount (in our example, 5 minutes) 
of time. Hence, the amount of elimination that will occur during a simulated 
clock tick is, say, five-minutes’ worth, and this must be accounted for.  

b. Set the next value for each vector to its new value on the next clock tick.  

    aspirinInPlasma[i] = aspirinInPlasma[i-1] – elimination 
  

In this first simple simulation, we are assuming only a single dose, and 
instantaneous absorption of the aspirin. Therefore, the only thing that affects the 
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amount of aspirin in the plasma each clock tick is the amount that is eliminated. 
Note carefully the vector indexes in this line of code. We are setting 
aspirinInPlasma[i] to a value based on aspirinInPlasma[i-1]. This means we 
are using the previous value of the aspirin in plasma (at vector position i-1) to 
compute the next value (at vector position i.)  

We can now end our loop:  

}  
 

5. For any derived stock variable that has not been defined yet, use a formula to create 
it based on its incoming arrows. Note that since at least one of these incoming 
arrows is from a stock variable (which is a vector), this circle’s variable will also be 
a vector.  

At this point, we have accomplished a great deal — nearly our whole purpose. The 
aspirinInPlasma vector now contains values corresponding to the amount of 
aspirin in the patient’s plasma that was present at five-minute increments over a 
period of 8 hours. All we need to do now is compute the concentration of the aspirin 
over that time, and plot it. First, we compute the concentration of the aspirin:  

plasmaConcentration = aspirinInPlasma / plasmaVolume  # ug/ml  
 

using the formula in Equation Set 2.5.1.  

6. Finally, plot any vector(s) of interest.  

And finally, we create a plot:  

plot(plasmaConcentration)  
 

For reference, here is the entire program:  

_________________________________________________________________  

halfLife = 3.2                              # h 
plasmaVolume = 3000                         # ml  
eliminationConstant = -log(0.5)/halfLife    # 1/h 
aspirinInPlasma = vector()  
aspirinInPlasma[1] = 2 * 325 * 1000         # ug  
simulationHours = 8                         # h 
deltaX = 5/60                               # h 
x = seq(0,simulationHours,deltaX)  
for (i in 2:length(x)) {  
    elimination =  
        (eliminationConstant * aspirinInPlasma[i-1]) * deltaX  
    aspirinInPlasma[i] = aspirinInPlasma[i-1] - elimination  
}  
plasmaConcentration = aspirinInPlasma / plasmaVolume # ug/ml  
plot(plasmaConcentration)  

_________________________________________________________________  

This program, with further comments and some additional variables defined for 
flexibility and good programming style, is available on the book’s website (Module 2.5).  
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Enhancing plots 

The plot produced by the above program is very “bare bones”; it would be more 
informative to add labels and appropriate values for the x and y axis ranges. We can give 
values to plot’s main, xlab, and ylab parameters to set the text for the overall plot and 
for the axes. To specify the boundaries (limits) for the y axis, we can set ylim parameter 
to a 2-element vector containing our lower and upper bounds. We’ll get a smooth line plot 
by specifying “type="l".” Finally, we’d like the x axis to show time, rather than iteration 
number, which we can create by using the seq function to create a vector from 0 to 8 (the 

number of hours) by  (the time increment in hours). Our final version looks like 

this:  
plot(x = x,  
     y = plasmaConcentration,  
     type = "l",  
     xlab = "hours",  
     ylab = "plasma concentration (ug/ml)",  
     ylim = c(0,500),  # min and max of y-axis  
     main = "Aspirin concentration over time")  
}  
 

Another way to make a plot more informative is to identify important boundary values. 
R provides the function abline() which allows you to add a straight line (of any 
thickness, style, or color) to a plot. This is useful for visually indicating significant 
thresholds for values.  

The simplest form of abline() takes two parameters: the y-intercept and the slope of 
the line (in that order). We can also add a parameter col to indicate the color of the line 
we want to draw. (Type “?abline” at the R prompt to get more information about the 
abline() function.)  

The book mentions the minimum effective concentration (MEC) and the maximum 
therapeutic concentration (MTC) as two important values for a particular medication. For 
aspirin, MEC is about 150 µg/ml and MTC is about 350. We can enhance our plot with a 
blue line to show the MEC and a red line to show the MTC by adding the following 
commands after calling the plot() function:  

 
abline(150,0,col="blue")  
abline(350,0,col="red")  
 

This produces the plot in Figure 1. From this graph, we can see that while the patient 
has thankfully not gotten close to the MTC range, his aspirin has probably become 
ineffective after only about 2 hours. Hence, another dose may be called for (see below.)  

5
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Figure 1: Plot for single-dose aspirin simulation.  
 

Example: Drug dosage (Repeated Doses, Module 2.5) 

We’ve gone through this first example in great detail. Now let’s add some complexity to the 
model by simulating repeated doses.  

Read the section "One-Compartment Model of Repeated Doses" in Module 2.5. Then, study 
carefully the stock-and-flow diagram in Figure 2.5.3. We will again follow the generic procedure 
(with less detail) to write a simulation program for this problem:  

 
1. Identify the circles with no incoming arrows at all. If a circle represents a constant 

(unchanging) value, then create a program variable to represent it. (Be careful of units.)  

The circles with no incoming arrows are “MEC,” “MTC,” half life,” “volume,” “dosage,” 
“absorption fraction,” “interval,” and “start.” All of these are simple constants:  

mec = 10                    # ug/ml  
mtc = 20                    # ug/ml  
halfLife = 22               # h  
volume = 3000               # ml  
dosage = 100 * 1000         # ug  
absorptionFraction = 0.12   # (unitless)  
interval = 8                # h  
start = 0                   # h 
 

It turns out that we will not need to use “start,” so it is superfluous. (Our initial dosage will 
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automatically occur on the first clock tick.)  

2. Identify all the circles whose only incoming arrows are from the circles already defined as 
program variables. Create a variable to represent each one, using a formula. (Be careful of 
units.) Repeat this step until the only circles left have something besides a circle pointing to 
them.  

As before, “elimination constant” is the only relevant circle here:  

eliminationConstant = -log(0.5)/halfLife   # 1/h 
 

3. Create a vector (array) for each stock variable (box). Set the first value of this vector to its 
initial condition (i.e., its value when the simulation begins.)  

We again have only one stock variable, which we create and initialize:  

drugInSystem = vector()  
drugInSystem[1] = absorptionFraction * dosage  
 

Notice that we must set the first value of the vector to be the absorption fraction times the 
dosage, since not all of the medicine is actually absorbed into the patient’s system.  

4. Run through the simulation loop for the specified total time and time increment.  

We’ll run the simulation for a week at 2-minute intervals:  

simHrs = 168        # hr  
deltaX = 2/60       # hr  
x = seq(0,simulationHours,deltaX)  
 

These variables set us up to begin our loop. Note that we have defined a vector x which will 
contain all of the time values (in hours or parts of an hour) of the simulation. The following 
lines, then, actually begins the loop:  

for (i in 2:length(x)) {  
 

Each time through the loop:  

a. Determine the (temporary) values of any flows and remaining ordinary variable(s). 
Depending on the nature of the circle/oval, this could be (a) an equation based on current 
values of other circle(s) and/or stock variables, (b) a special value based on the current 
time (for instance, a “pulse” variable that takes on certain values at specific clock ticks) 
or other things.  

This is the step that is most different from the previous example. From Figure 2.5.3, we 
can see that there are two flows affecting how much drug is in the system: the amount 
ingested, and the amount eliminated. (We can see this because the stock variable has two 
gray lines coming into it, one from each of these quantities.) Determining how much is 
eliminated in each time step is the same as before. Determining the amount ingested, 
however, is different.  

We recognize that the patient will be taking a dose of Dilantin every interval hours. So 
we need to write code that says, “if we have reached a multiple of interval hours, ingest 
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one dose during this time step. Otherwise, don’t ingest anything right now.” There are 
several ways to write this code, but the easiest is probably:  

    if (itox(i) %% interval == 0) {  
        ingested = absorptionFraction * dosage  
    } else {  
        ingested = 0  
    }  
 

Look carefully at that if statement. It calls the itox() function we defined earlier, for 
determining what real-world time value a particular index corresponds to. It also contains 
the “%%” operator, which you may recall gives the remainder when performing division 
of integers. For instance, if you ask R to calculate “11 %% 8” it will give the answer 3, 
since 11 divided by 8 is 1 with a remainder of 3. Similarly, if you ask for “16 %% 8” R 
will respond with 0, since 8 divides 16 evenly and has no remainder.  

Quick Review Question 3 Review the meaning of the %% operator by typing “6 %% 3,” 
“7 %% 3,” “8 %% 3,” and “9 %% 3” at the R console, and seeing the results.  

We use this trick to determine the simulation points for the 8-hour intervals. If we take 
the time of each clock tick in hours (which is what tox(i) gives us — confirm this for 
yourself), and it is a multiple of exactly 8 hours, then we will set a variable called 
ingested to be equal to a new dose. In all other cases, we will set this variable to 0. This 
gives us a “pulse” effect, as desired.  

Quick Review Question 4 Suppose deltaX is equal to 30/60, and interval is equal to 
12. For what values of i is “itox(i) %% interval” equal to 0?  

Computing the amount eliminated in a time step is the same as before:  

    eliminated =  
        (eliminationConstant * drugInSystem[i-1]) * deltaX  
 

b. Set the next value for each vector to its new value on the next clock tick.  

Finally, we add in the amount ingested and subtract the amount eliminated for this clock 
tick, and end our loop:  

    drugInSystem[i] = drugInSystem[i-1] + ingested - eliminated  
}  
 

5. For any derived stock variable that has not been defined yet, use a formula to create it based 
on its incoming arrows. Note that since at least one of these incoming arrows is from a stock 
variable (which is a vector), this circle’s variable will also be a vector.  

concentration = drugInSystem / volume  
 

6. Finally, plot any vector(s) of interest.  

plot(  
    x = x,  
    y = concentration,  
    type = "l",  
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    xlab = "hours",  
    ylab = "concentration (ug/ml)",  
    ylim = c(0,20),  
    main = "Dilantin concentration over time")  
abline(mec,0,col="blue")  
abline(mtc,0,col="red")  
 

For reference, here is the entire program:  

__________________________________________________________________________  

mec = 10                    # ug/ml  
mtc = 20                    # ug/ml  
halfLife = 22               # h  
volume = 3000               # ml  
dosage = 100 * 1000         # ug  
absorptionFraction = 0.12   # (unitless)  
interval = 8                # hr  
  
eliminationConstant = -log(0.5)/halfLife   # 1/h  
  
drugInSystem = vector()     # ug  
drugInSystem[1] = absorptionFraction * dosage  
  
simHrs = 168                # h  
deltaX = 2/60               # h  
x = seq(0,simHrs,deltaX)  
  
xtoi = function(x) x/deltaX + 1  
itox = function(i) (i-1)*deltaX  
  
for (i in 2:length(x)) {  
    if (itox(i) %% interval == 0) {  
        ingested = absorptionFraction * dosage  
    } else {  
        ingested = 0  
    }  
    eliminated =  
        (eliminationConstant * drugInSystem[i-1]) * deltaX  
    drugInSystem[i] = drugInSystem[i-1] + ingested - eliminated  
}  
  
concentration = drugInSystem / volume  
  
plot(  
    x = x,  
    y = concentration,  
    type = "l",  
    ylim = c(0,25),  
    xlab = "hours",  
    ylab = "concentration (ug/ml)",  
    main = "Dilantin concentration over time")  
abline(mec,0,col="blue")  
abline(mtc,0,col="red")  

_________________________________________________________________  

A slightly embellished version of this program is available on the book’s website (Module 
2.5). 
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Figure 2: Plot for multiple-dose Dilantin simulation.  
 



Experimentation 

One of the great values of computational simulation is the ability to modify a model’s 
parameters and see the effect. Experiment with the repeated doses program. Download 
the starter code from the website (at http://wofford-
ecs.org/IntroComputationalScience/dataFilePages/dataFiles/RSD.zip, save 
it, unzip, and run the program in R, verifying that you get a plot that looks like the one in 
Figure 2. Then, experiment with it in the following ways (remember that every time you 
make a change to the program, you must save the .R file before re-running it):  

 
• Suppose the patient is a child, whose plasma level is only 1500 ml. Would the 

dosage schedule from the original file result in the child surpassing the MTC? If so, 
how quickly would the MTC be reached?  

• If such a child took 60 mg doses in place of the 100 mg doses, would this alleviate 
the problem?  

• Suppose this medication can only be obtained in 100 mg doses that cannot be easily 
divided. If the child took the drug only once per day, what effect would that have?  

 


