
9.4 R Tutorial 5

Introduction to Computational Science:
Modeling and Simulation for the Sciences, 2nd Edition

Angela B. Shiflet and George W. Shiflet
Wofford College

© 2014 by Princeton University Press

Introduction

We recommend that you work through this tutorial with a copy of R, answering all Quick
Review Questions. R is available from http://www.r-project.org.
 The prerequisites to this tutorial are RCT Tutorials 1-4. Tutorial 5 prepares you to
use R for material in this and subsequent chapters. The tutorial introduces the following
functions and concepts: maximum, minimum, length, animation, function files, and
several features for projects, including the while loop, logical operators, and testing
membership.

Maximum, Minimum, and Length

The R function max returns the maximum of a vector argument. Thus, the form of a call
to the function can be as follows:

max(c(x1, x2, ...))

In this case, the function returns the numerically largest of x1, x2, For example, the
following invocation with four arguments returns the maximum argument, 7.

max(c(2, -4, 7, 3))

 Another form of a call to the function, which follows, has a two-dimensional array
of numbers as argument. The result is a vector of the maximum of all the elements in the
matrix. The segment below generates a 3-by-3 array of numbers and returns the
maximum value 5:

vec = c(-1, 2, -1, 0, 1, 5, 3, 2, 1)
lst = matrix(vec, nrow=3)
max(lst)

 In a similar fashion, the R function min returns the minimum of a vector of numeric
arguments; or in the case of a two-dimensional array, min returns a vector a minimum
column values.
 When we do not know the length of a vector, we can employ the length function,
such as follows:

length(lst)

If lst were a matrix, this command would return the number of its elements.

R Tutorial 5 2

Quick Review Question 1 Start a new Script. In opening comments, have "R Tutorial
5 Answers" and your name. Save the file under the name RCTTutorial5Ans.m. In
the file, preface this and all subsequent Quick Review Questions with a comment
that has "## QRQ" and the question number, such as follows:

QRQ 1 a

a. Write a segment to generate a list, lst, of 100 random floating point numbers

between 0 and 1 and to display the maximum and minimum in the list.
b. Write a segment to generate and display a vector of zeros, z, where the

number of elements is a random integer between 1 and 20, and to return the
number of elements in z.

Animation

One interesting use of a for loop is to draw several plots for an animation. In making the
graphics, plots should have the same axis so that axes appear fixed during the animation.
The segment below generates a sequence of plots of 0.5 sin(x), sin(x), 1.5 sin(x), ...,
5.0sin(x) with x varying from 0 to 2π to illustrate the impact the coefficient has on
amplitude. However, for an effective demonstration, each graph must have the same
display area, here from -5 to 5 on the y-axis.

x = seq(0, 2*pi, 0.1)
for (i in 1:10) {
 y = 0.5 * i * sin(x)
 plot(x, y, type = 'l', xlim=c(0,2*pi), ylim=c(-5,5))
}

However, the animation can be fairly slow and jerky as R generates the animation one
frame at a time.
 To display the animation slower, we can insert a command, Sys.sleep(x), to pause
for a designated number of seconds. For example, the following command stops further
execution for 5 seconds:

Sys.sleep(5)

The adjusted sequence to generate an animation with approximately 4 frames per second
follows:

x = seq(0, 2*pi, 0.1)
for (i in 1:10) {
 y = 0.5 * i * sin(x)
 plot(x, y, type = 'l', xlim=c(0,2*pi), ylim=c(-5,5))
 Sys.sleep(0.25)
}

Quick Review Question 2 The first two statements of following segment generate 10
random x- and y-coordinates between 0 and 1. We then plot the points as fairly
large black dots in a 1-by-1 rectangle. Adjust the code to generate 10 plots. The
first graphics only displays the first point; the second graphics shows the first two
points; and so forth. Why do we want to specify the plot range to be the same for
each graphic?

xLst = runif(10)
yLst = runif (10)
plot(xLst, yLst, xlim=c(0,1), ylim=c(0,1))

R Tutorial 5 3

Quick Review Question 3 The function f below is the logistic function for constrained
growth, where the initial population is 20, the carrying capacity is 1000, and the
rate of change of the population is (1 + 0.2i) (see Module 2.3, "Constrained
Growth"). To see the effect of increasing the rate of change from (1 + 0.2(1)) =
1.2 to (1 + 0.2(10)) = 3.0, replace the assignment of 5 to i with the start of a for
loop to generate 10 plots of f(t, i), where i varies from 1 to 10.

f = function(t, i) {(1000*20)/((1000 - 20)*exp(-(1+0.2*i)*t) + 20)}
t = seq(0,3,0.1)
i = 5 # replace with for loop
plot(t, f(t, i) , type = 'l', xlim=c(0,3), ylim=c(0,1000))

Function Files

Previously, we have used anonymous functions with very short definitions and,
consequently, have defined them in one script file with the entire program. For example,
we can define a function, sqr, as follows:

sqr = function(x) {x*x}

 However, for a function that has a longer definition or that we wish to reuse, we
place the definition in a separate file. To begin we select New Document from the File
menu. In the resulting file, we type the function with appropriate comments, such as
follows:

function to return square of a parameter
sqr = function(x) {x*x}

R returns the last value in the function definition, here x*x. Alternatively, we explicitly
use a return, as follows:

function to return square of a parameter
sqr = function(x) {
 return(x*x)
}

 After writing this function file, we save the file using the name of the function, here
sqr, and R appends the extension .R. Thus, the file name is sqr.R. For R to accept input
from this file after initially defining or after making any change, we must execute the
source command from the command line of the main script file, as follows:

source("sqr")

A simulation often includes a number of such function files. Thus, we can organize all
the source commands in one file, say source.R, that also removes all earlier definitions,
as follows:

File: source.R
rm(list=ls(all=TRUE))
source("sqr.R")
… # other source commands appear here

Then, the main script can execute one source command for this file, resulting in
execution of all source commands:

R Tutorial 5 4

main script file
source("source.R")

Once we save the function file and execute the appropriate source command, from the
command window or in the program, we can call the function with an argument of 4, as
follows:

sqr(4)

 We should get the answer of 16. However, we may get a message, such as follows:

Error: could not find function "sqr"

In this case, we need to inform R where to look for the definition. From the Misc menu,
we click Change Working Directory…, browse to the appropriate folder, and click Open.
When we call a function, R searches the saved path names until finding a match.

Quick Review Question 4
a. Define a function, rectCircumference, that returns the circumference,

circumference, of a rectangle with parameters for length and width, l and w,
respectively. The circumference is 2l + 2w. Use a function file. If
necessary, set the path to the function definition.

b. In the answer script file, have the appropriate source command. Call the
function to return the circumference of a rectangle with dimensions 3 and 4.2,
respectively.

Quick Review Question 5
a. In a function file, define randIntRange with parameters lower and upper to

return a random integer between lower and upper -1, inclusively. Thus,
randIntRange(-3, 3) should return a number from the set {-3, -2, -1, 0, 1, 2}.

b. Have an appropriate source file.
c. Write a for loop to display 10 random integers between 5 and 8, inclusively.

 If we have several values to return, we can place them in a vector. For example,
the following line begins a function definition in which the function returns the area and
circumference of a circle with radius r:

circleStats = function(r) {

In the function body, we have two lines for the area and circumference and return a
vector of these values, as follows:

area = pi * r * r
circumference = 2 * pi * r
return(c(area, circumference))

We employ the operator .* so that circleStats can operate on a vector of radii, such as
circleStats([1 3]).
 In calling the function, we assign the function call to a variable, such as follows:

stats = circleStats(5)

Execution of the command assigns the area and circumference of the circle with radius 5
to vector stats, as the following shows

> stats

R Tutorial 5 5

[1] 78.53982 31.41593

Referencing individual elements, we can store the values in separate variables, as
follows:

ar = stats[1]
cir = stats[2]

Quick Review Question 6
a. Define a function squareStats that returns the area (side squared) and

circumference (four times side) of a square with a parameter, side, for the
length of a side. Use a function file.

b. Execute an appropriate source command.
c. Call the function to obtain the area and circumference of a square with each

side having length 3.
d. Assign the area and circumference to individual variables, area and

circumference.

 By default, variables inside the definition are local to the function. To make
symbols known elsewhere, we declare them to be utils::globalVariables. However, we
should use this feature with great care, because global variables can cause unexpected
results, called side effects. It is appropriate to declare constants, usually written in all
uppercase letters, that several functions use as global. If needed, the command window
or main script file should also declare these constants as globalVariables in a vector. The
following declares EMPTY to be a global variable and assigns it the value 0.

utils::globalVariables("EMPTY")
EMPTY = 0

For more than one global variable, we employ a vector, as follows:

utils::globalVariables(c("EMPTY", "TREE"))

Logical Operators

The material in this section is useful for several projects in Chapter 14 that are
appropriate after covering the current chapter.

Sometimes, a condition, such as in an if statement, is compound. For example, suppose
we wish to display "Out of bounds" if x is less than -3 or greater than 3. A logical OR
operator in R is ||, so the statement is as follows:

if ((x < -3) || (x > 3)) {
 cat("Out of bounds\n")
}

Although obviously not in this example, sometimes both conditions can be true, such as
with (x > 3) || (y > 3) when x is 5 and y is 10. In this case, the compound condition is
also true.
 The logical OR operator employs short circuiting. With short circuiting, as soon
as R can detect that a compound condition is true or false, the system stops computation
of the condition. In the above example, ((x < -3) || (x > 3)), if the value of x is less than -
3, we know that the compound condition is true; R does not need to evaluate the second
condition, x > 3.

R Tutorial 5 6

 The opposite condition, -3 ≤ x ≤ 3, requires a logical AND operator &&, as in the
following example:

if ((-3 <= x) && (x <= 3)) {
 cat("Out of bounds\n")
}

We cannot write the condition as in mathematics, (-3 ≤ x ≤ 3), but must express the
condition with a compound statement. The operator && also employs short circuiting.
For example, if x is -5, we know that the condition (-3 ≤ x) is false; and, in fact, we know
the compound condition ((-3 ≤ x) && (x ≤ 3)) is false without calculating the second
condition. Thus, because of short circuiting, R would not evaluate (x ≤ 3).
 To negate a condition, we employ the logical NOT operator !. Thus, (!(x > 3)) is
equivalent to (x <= 3).
 Expressions can involve logical operators in conjunction with arithmetic and
relational operators. In such cases, the operator precedence of Table 1 determines the
order of evaluation. When in doubt, we can always use parentheses to clarify the
precedence as in the above two if statements. However, as Table 1 indicates, we can omit
the parentheses, as follows, because R evaluates an inequality before evaluating an OR
operator:

if (x < -3 || x > 3) {
 cat("Out of bounds\n")
}

Table 1 Operator precedence from highest to lowest

1. ()
2. ' ^ .' .^
3. Unary + Unary - Unary ~
4. * / .* ./
5. + -
6. :
7. < <= > >= == ~=
8. &&
9. ||

Quick Review Question 7 Write an if statement for the following situation and test
using several values for the variables: If x + 2 is greater than 3 or y is less than x,
add 1 to y; otherwise, subtract 1 from x.

While Loop

The material in this section is useful for Chapter 13 and several projects in Chapter 14
that are appropriate after covering the current chapter.

We have employed the for loop to repeat a segment of code when we know the number
of iterations. However, if a loop must execute as long as a condition is true, we can use a
while loop. The form of the command is as follows:

while (condition) {
 statements
}

R Tutorial 5 7

For example, the segment below generates and displays random numbers between 0.0
and 1.0 as long as the values are less than 0.7. The segment also counts how many of the
random values are in that range.

counter = 0
ra = runif(1)
while (ra < 0.7) {
 counter = counter + 1
 ra = runif(1)
}
counter

We initialize to zero a variable, counter, that is to count the number of random numbers
less than 0.7. Before the loop begins, we prime ra with a random number so that ra has
an initial value to compare with 0.7. Then, at the end of the loop, we obtain and display
another value for ra to compare with 0.7. After completion of the loop, we display the
final value of counter.

Quick Review Question 8 Write a segment to generate an animation, as follows:
Assign 0 to x and 1 to i, an index. While x is between -5 and 5, plot the point (x, 0)
as a small circle; save the frame as the ith element of a vector; add 1 to i; and use
randIntRange from Quick Review Question 5 to generate a random integer -1, 0, or
1 and assign to x the sum of this number and x.

