
10.3 Spreading of Fire

R Quick Review Questions

Introduction to Computational Science:
Modeling and Simulation for the Sciences, 2nd Edition

Angela B. Shiflet and George W. Shiflet
Wofford College

© 2014 by Princeton University Press

This file contains system-dependent Quick Review Questions and answers in R for
Module 10.3 on "Spreading of Fire." Complete all code development in R.

Initializing the System

Quick Review Question 1 Suppose the fire function initializes global variables EMPTY,
TREE, and BURNING.
a. A site has a tree with a probability of probTree. Assign to treesOrBurns an n-

by-n array of zeros and ones, where 1 occurs in an element with a probability
of probTree, that is, a uniformly distributed random number between 0 and 1
is less than probTree for that element.

treesOrBurns = (probTree, =n)

b. A tree, which has a value of 1 in treesOrBurns, is burning tree with a
probability of probBurning. Assign to burns an n-by-n array of zeros and
ones, where 1 occurs in an element with a probability of probTree. Thus, if
an element is 1 in treesOrBurns and a uniformly distributed random number
between 0 and 1 is less than probBurning, then the corresponding element in
burns is 1. We obtain burns by taking the array product of treesOrBurns and
an appropriate array of zeros and ones.

burns = treesOrBurns (probBurning, =n)

c. Assign to trees an n-by-n array of zeros and ones, where 1 occurs where the
cell has a non-burning tree. Thus, if an element is 1 in treesOrBurns and 0 in
burns, the corresponding element is 1 in trees. If 1 occurs in corresponding
elements of treesOrBurns and burns, that element is 0 in trees.

trees = treesOrBurns burns

d. Assign to empties an n-by-n array of zeros and ones, with 1 indicating an
empty site. Thus, if 0 occurs in treesOrBurns, the corresponding element in
empties is 1. If 1 is at a site in treesOrBurns, that element is 0 in empties.

empties = treesOrBurns

e. Which of the following is (are) true about corresponding elements of empties,
trees, and burns.

 A. All three have values of 1.
 B. Exactly two have values of 1, while the other is 0.
 C. Exactly two have values of 0, while the other is 1.
 D. All three have values of 0.

10.3 R QRQ 2

 E. It is impossible to know.
f. Assign to forest an n-by-n array where an element is EMPTY if the

corresponding element in empties is 1, is TREE if the corresponding element
in trees is 1, and is BURNING if the corresponding element in burns is 1

forest = empties EMPTY + trees TREE + burns BURNING

Updating Rules

Quick Review Question 2 The following questions develop the rule for spread(site, N,
E, S, W, probLightning, probImmune) that applies to the situation where a site does
not contain a tree at this or any time step. Suppose the function M-file spread.m
begins as follows:

spread = function(site, N, E, S, W, probLightning, probImmune) {
SPREAD - Function to return the value of a site
at the next time step
An empty cell remains empty.
A burning cell becomes empty.
If a neighbor to the north, east, south, or west of
a tree is burning, then the tree does not burn with a
probability of probImmune.
If a tree has no burning neighbors, it is hit by lightning
and burns with a probability of probLightning * (1 - probImmune).

 utils::globalVariables(c("EMPTY", "TREE", "BURNING"))

a. Select the value of site: EMPTY, TREE, BURNING, none of these
b. Select the return value: EMPTY, TREE, BURNING, none of these
c. Complete the implementation for this rule.

if ()
 newSite =

Quick Review Question 3 The following questions develop the rule for spread that
applies to the situation where a site contains a burning tree:
a. Select the value of site: EMPTY, TREE, BURNING, none of these
b. A burning tree always burns down. Give the return value of the spread

function for this situation.
c. Complete implementation of this rule, which occurs in an elseif segment.

else if ()
 newSite =

Quick Review Question 4 The following questions develop the rule for spread that
applies to the situation where a site contains a non-burning tree that may catch fire
because a neighboring site contains a burning tree:
a. Select the value of site: EMPTY, TREE, BURNING, none of these
b. Select the meaning of the following call to If:

if (runif(1) < probImmune)
 newSite = TREE
else
 newSite = BURNING
end

10.3 R QRQ 3

A. If a random number is less than the probability of immunity, then the
tree catches fire; else it does not.

B. If a random number is less than the probability of immunity, then the
tree does not catch fire; else it does.

C. If a random number is less than the probability of immunity, then the
tree stays immune; else it does not.

D. If a random number is less than the probability of immunity, then the
tree does not stay immune; else it does.

c. For the tree to have a chance of burning due to fire at a neighboring site, give
the value that at least one of N, E, S, W must have.

d. Give the start of the if statement to test if one of the parameters N, E, S, W is
BURNING.

e. Give an implementation of this rule.

Quick Review Question 5 Complete implementation of the rule for spread that applies
to the situation where a site contains a non-burning tree that may be hit by lightning
and burn. This code provides an alternative to the situation in the previous Quick
Review Question, where a tree has a burning neighbor.

 else if (runif(1) < probLightning * (1 - probImmune))
 newSite =
 else
 newSite =
 end

Periodic Boundary Conditions

Quick Review Question 6 This question extends an array as in Figure 10.3.1 by
attaching the last row to the beginning and the first row to the end of the original
array.
a. Write a command to return the last row of array lat.
b. Write a command to return the first row of array lat.
c. Complete the following statement to make latNS an extended array of mat as

described in this question.

extendRows = lat[nrow(lat),] lat lat[1,])

Quick Review Question 7 This question extends an array as in Figure 10.3.2.
a. Write a command to return the last column of array extendRows.
b. Write a command to return the first column of array extendRows.
c. Complete the following statement to make extlat an extended array of lat as

described in this question.

extlat = [extendRows(,ncol(extendRows)) extendRows extendRows(, 1)]

d. If the original array mat is of size 7-by-7, after extending the matrix as in this
and the previous Quick Review Question, give the size of the extended
matrix.

Applying a Function to Each Grid Point

Quick Review Question 8 This question develops the function applyExtended.
a. Complete the code to start the definition of applyExtended, which is to have

an extended array parameter (latExt).

10.3 R QRQ 4

applyExtended = (latExt , probLightning, probImmune)

b. Write the statement to assign to n the number of rows (or columns) in the

internal, un-extended square array.
c. Suppose i represents the row index and j the column index. To apply the

function spread to each internal cell of latExt, we use nested for loops and let
indices i and j vary between two values. Give the initial value of i (or j).

d. Give the final value for i (or j).
e. Within the body of inner for loop, we assign values to site, N, E, S, and W.

Then, we apply the function spread with parameters site, N, E, S, W,
probLightning, and probImmune to each internal cell site. Figure 10.2.11
gives the coordinates of a site and its neighbors. Give the code to assign to
site the value of the (i, j)-element of two-dimensional array latExt.

f. Give the code to assign to N the value from latExt corresponding to the
neighbor to the north.

g. Give the code to assign to E the value from latExt corresponding to the
neighbor to the east.

h. Complete the assignment to the appropriate newmat element of the evaluation
of the function spread with parameters site, N, E, S, and W. Because newmat
has the size of the original un-extended array, the newmat element is on a row
and column, where each index (i or j) is one less than the corresponding index
of site in latExt.

newmat[,] = (site, N, E, S, W , probLightning, probImmune)

i. Give the complete definition of applyExtended.

Simulation Program

Quick Review Question 9 Complete the implementation of the fire function, assuming
grids is a three-dimensional array containing in the first page the initial forest and
the forest at all other time steps.

fire = function(n, probTree, probBurning, probLightning, probImmune, t) {
FIRE simulation
 utils::globalVariables(c("EMPTY", "TREE", "BURNING"))
 EMPTY = 0
 TREE = 1
 BURNING = 2
 grids = array(=c(n,n,t+1))
 grids[, ,] = forest
 for (i in 2:(t + 1)) {

 }
 return(grids)
}

10.3 R QRQ 5

Display Simulation

Quick Review Question 10 This question develops the function showGraphs that of
graphics corresponding to the grids in a three-dimensional array (graphList), where
each page holds a grid for one time step of the simulation.
a. The function calls another function, pointsForGrid, which has parameters of a

two-dimensional matrix, grid, and a value, val, such as TREE or BURNING.
The function pointsForGrid returns a list of two vectors, xcoords and ycoords,
which contain the x-coordinates and y-coordinates where the grid values are
val. Write a statement to assign to xcoords an empty vector.

b. In the following nested loop, complete the if statement possibly to place new
values in xcoords and ycoords. To match the matrix values in the eventual
visualization, we reverse the rows.

for (row in 1: (grid)) {
 for (col in 1: (grid)) {
 if (== val) {
 xcoords[(xcoords)+1] = col
 ycoords[(ycoords)+1] = nrow(grid) - row
 }
 }
 }

 as below so that a visualization pictures a site value of EMPTY (0) as yellow,

TREE (1) as forest green, and BURNING (2) as burnt orange. The values on a
row represent the amounts of red, green, and blue for the corresponding color.
Give the command to make map the color map for the graphics.

map = [1 1 0; % EMPTY -> yellow
 0.1 0.75 0.2; % TREE -> forest green
 0.6 0.2 0.1]; % BURNING -> burnt orange

c. Returning to the development of showGraphs, give the statement to assign to
m the number of grids (pages) in graphList.

d. Give the statement to assign to local variable g the k-th page in three-
dimensional array graphList.

e. Complete the commands to produce a graphic of g as a rectangular grid were
trees are green and burning trees are red. Sleep 0.2 s between frames.

trees = pointsForGrid(g,TREE)
burnings = pointsForGrid(g,BURNING)
plot(trees[[]],trees[[]],pch=19,col= ,
 xlim=c(0,n+1),ylim=c(0,n+1))
points(burnings[[]],burnings[[]],col= , pch=23,
 bg="orange")
Sys.sleep(0.2)

Answers to Quick Review Question

1. a. treesOrBurns = matrix(runif(n^2) < probTree,nrow=n)
b. burns = treesOrBurns * matrix(runif(n^2) < probBurning,nrow=n)
c. trees = treesOrBurns - burns
d. empties = 1 - treesOrBurns
e. C. Exactly two have values of 0, while the other is 1.
f. forest = empties * EMPTY + trees * TREE + burns * BURNING

10.3 R QRQ 6

2. a. EMPTY
 b. EMPTY
 c. if (site == EMPTY)

 newSite = EMPTY

3. a. BURNING
 b. EMPTY, which indicates an empty cell
 c. else if (site == BURNING)

 newSite = EMPTY

4. a. TREE
b. B. If a random number is less than the probability of immunity, then the

tree does not catch fire; else it does.
 c. BURNING
 d. if (N==BURNING || E ==BURNING || S == BURNING || W == BURNING)

e. if (N==BURNING || E==BURNING || S==BURNING || W==BURNING) {
 if (runif(1) < probImmune)
 newSite = TREE
 else
 newSite = BURNING
 }

5. else if (runif(1) < probLightning * (1 - probImmune))
 newSite = BURNING
else
 newSite = TREE
end

The following segment contains all the updating rules for the function spread:

if (site == EMPTY){
 newSite = EMPTY
 }
else if (site == BURNING){
 newSite = EMPTY
 }
else if (site == TREE) {
 if (N == BURNING || E == BURNING || S == BURNING || W == BURNING) {
 if (runif(1) < probImmune)
 newSite = TREE
 else
 newSite = BURNING
 }
 else if (runif(1) < probLightning * (1 - probImmune))
 newSite = BURNING
 else
 newSite = TREE
 }

6. a. lat[nrow(lat),]
 b. lat[1,]
 c. extendRows = rbind(lat[nrow(lat),], lat, lat[1,])

7. a. extendRows[,ncol(extendRows)]
 b. extendRows[, 1]
 c.

extlat = cbind(extendRows[,ncol(extendRows)],extendRows,extendRows[,1])
 d. 9-by-9

10.3 R QRQ 7

8. a.
applyExtended = function(latExtended, probLightning, probImmune){

b. n = nrow(latExtended) - 2
c. 2

 d. n + 1
 e site = latExt[i, j]
 f. N = latExt[i - 1, j]
 g. E = latExt[i, j + 1]
 h. newmat[i - 1, j – 1] = spread(site, N, E, S, W ,
 probLightning, probImmune)
 i.

applyExtended = function(latExt, probLightning, probImmune) {
APPLYEXTENDED - Function to apply
spread(site, N, E, S, W, probLightning, probImmune) to every interior
site of square array latExt and to return the resulting array
 n = nrow(latExt) - 2
 newmat = matrix(c(rep(0,n*n)), nrow = n)
 for (j in 2:(n + 1)) {
 for (i in 2:(n + 1)) {
 site = latExt[i, j]
 N = latExt[i - 1, j]
 E = latExt[i, j + 1]
 S = latExt[i + 1, j]
 W = latExt[i, j - 1]
 newmat[i - 1, j - 1] = spread(site, N, E, S, W,
 probLightning, probImmune)
 }
 }
 return(newmat)
}

9.
fire = function(n, probTree, probBurning, probLightning, probImmune, t)
{
FIRE simulation
 utils::globalVariables(c("EMPTY", "TREE", "BURNING"))
 EMPTY = 0
 TREE = 1
 BURNING = 2

 forest = initForest(n, probTree, probBurning)
 grids = array(dim=c(n,n,t+1))

 grids[,,1] = forest

 for (i in 2:(t+1)) {
 forestExtended = periodicLat(forest)
 forest = applyExtended(forestExtended, probLightning,
 probImmune)
 grids[,,i] = forest
 }

 return(grids)
}

10. a. xcoords = vector()

b.
 for (row in 1:nrow(grid)) {
 for (col in 1:ncol(grid)) {
 if (grid[row,col] == val) {
 xcoords[length(xcoords)+1] = col
 ycoords[length(ycoords)+1] = nrow(grid) - row

10.3 R QRQ 8

 }
 }
 }

 c. m = dim(graphList)[3]
d. g = graphList[,, k]
e.

trees = pointsForGrid(g,TREE)
burnings = pointsForGrid(g,BURNING)
plot(trees[[1]],trees[[2]],pch=19,col="green",
 xlim=c(0,n+1),ylim=c(0,n+1))
points(burnings[[1]],burnings[[2]],col="red",pch=23,bg="orange")
Sys.sleep(0.2)

