
10.4 Movement of Ants

R Quick Review Questions

Introduction to Computational Science:
Modeling and Simulation for the Sciences, 2nd Edition

Angela B. Shiflet and George W. Shiflet
Wofford College

© 2014 by Princeton University Press

This file contains system-dependent Quick Review Questions and answers in R for
Module 10.4 on "Movement of Ants." Complete all code development in R.

Grid Initializations

Quick Review Question 1 This question refers to the initialization of the grid for ant
movement. In an M-file, we define a function gridInit to return an initial grid, grid.
The function begins as follows:

initAntGrid<- function(n, probAnt)
% INITANTGRID - initialization of n+2-by-n+2 array for ant simulation
% probAnt is the probability that a site has an ant.
global EMPTY NORTH EAST SOUTH WEST STAY BORDER
EMPTY = 0
NORTH = 1
EAST = 2
SOUTH = 3
WEST = 4
STAY = 5
BORDER = 6

a. Initialize grid to be an n+2-by-n+2 array of value BORDER.
b. Write a statement to return a random integer between 1 and 4 representing the

four directions.
c. Complete the code to assign values to the interior of the two-dimensional

array grid. With a probability of probAnt, a site contains an ant that faces in a
random direction. Otherwise, the site does not contain an ant.

for (i in 2:n+1){
 for (j in 2:n+1){
 if(){
 grid[] = floor(runif(1,1,5))
 else
 grid[] = ;
 }
 }
}

11.3 MATLAB QRQ 2

Quick Review Question 2
a. Assign to pherGrid a n+2-by-n+2 array of value grid of zeros.
b. Complete the loop to generate a chemical trail with no ants on the middle row

of the grid, grid. The maximum amount of chemical, MAXPHER, which is a
global constant, occurs in column n, and for column i+1 the amount of
chemical is a fraction, i / n, expressed as an integer, of the maximum,
MAXPHER. For example, if MAXPHER is 50, i is 10, and n is 17, then the
amount of chemical in column 10 is the integer 29 because (50)(10)/17 =
29.41.

 i = round(n/2);

for i = 1:n
 grid[mid, i+1] = ;
end

Applying Diffusion

Quick Review Question 3 Complete the code for applyDiffusionExtended to apply the
diffusion function to each internal cell and returns an (n + 2)-by-(n + 2) pheromone
grid, keeping the border intact.

applyDiffusionExtended = function(matExt, diffusionRate)
n = ncol(matExt) - 2
pherGrid = matExt
for(i in :){
 for (j in :){
 site = matExt[i, j];
 N = matExt[i-1, j];
 NE = matExt[i-1, j+1];
 E = matExt[i, j+1];
 SE = matExt[i+1, j+1];
 S = matExt[i+1, j];
 SW = matExt[i+1, j-1];
 W = matExt[i, j-1];
 NW = matExt[i-1, j-1];
 pherGrid[i, j] = diffusionPher(diffusionRate,
 site, N, NE, E, SE, S, SW, W, NW);
 }
return (phergrid)
}

Sensing

Quick Review Question 4
a. Complete the first line of the function M-file sense.m.

 <- sense(site, na, ea, sa, wa, np, ep, sp, wp)

b. Complete the command in the function definition to indicate that STAY and
EMPTY are not local.

11.3 MATLAB QRQ 3

 utils::globalVariables()

c. Complete the command to indicate that an empty site does not sense anything.

Thus, its value remains the same.

 if (site ==)

 direction =
}

d. Complete the assignment to lst of a list of the amounts of pheromone, np, ep,
sp, wp, in neighboring cells.

lst =

e. This part refers to the second sense rule that an ant does not turn to a cell from
which the creature just came. Suppose site is the direction from which the ant
came. Write the statement to do the following: If site is less than or equal to
4 (i.e., not STAY), make the corresponding value of lst be a small number, -2.

f. This question refers to the fourth sense rule: An ant does not turn to a location
that currently contains an ant. Suppose na is the ant grid value for the
neighbor to the north. Assuming neighbors is defined as [na, ea, sa, wa],
write the loop to do the following: If the neighbor in a direction contains an
ant, make the corresponding element of lst be -2.

e. Complete the statement to assign the maximum level from lst to mx.

mx =

f. According to rule 6, if no neighboring cell is available, the ant will not plan to
move. Start the if statement to test that the ant cannot (i.e., mx is negative),
and if so the returned value is STAY

 (){
 direction =
}

g. Parts g-j refer to Rule 5, which says that an ant turns in the direction of the
neighboring available (not the previous, an occupied, or a border cell) with the
greatest amount of chemical. Complete the statement to assign to posList a
list of indices in lst where the maximum level, mx, occurs.

posList = ()

h. Complete the statement to assign to lng the number of elements in posList.

lng = (posList)

i. Complete the statement to assign to rndPos a random integer between 1 and
lng, inclusively, that is a possible index of posList.

rndPos =

j. Give the code to return the posList element with index rndPos.

11.3 MATLAB QRQ 4

k. Give this entire sense rule.

Quick Review Question 5 applySenseExtended is similar to applyPherExtended, except
we change the value of the antGrid cell only if the cell contains an ant (i.e. is not
EMPTY). Start the if statement to test that the ij element of antGrid is not EMPTY.

Walking

Quick Review Question 6
a. Complete the assignment so that the new amount in newPherGrid[i, j] is the

maximum of 0 and the current amount minus EVAPORATE (rule 7).

 newPherGrid[i, j] =

b. Give the ant-grid element to the north of antGrid[i, j].

Simulation

Quick Review Question 7
a. Write a statement to assign to antGrids a page containing antGrid.
b. Write a statement to append antGrid to antGrids as the i + 1 element.

Visualizing the Simulation

Quick Review Question 8 Suppose antGrids is a list of ant grids, pherGrids is a list of
pheromone grids, and maxp is the maximum amount of chemical in any cell of any
grid in pherGrids.
a. Write a statement to assign to m the number of grids in antGrids.
b. Write a statement to assign to n the number of rows (or columns) on the

interior of an individual grid.
c. Write a statement to initialize gr to be an n�´ n matrix of zeros.
d. Assign to a the kth element of antGrids.
e. Assign to map the appending of the rgb value for red and the gray scale

sequence from 0 to 1 with maxp number of values.
f. Suppose p is the kth element of pherGrids. Complete the nested loops to

assign to gr[i - 1, j - 1] an appropriately scaled pheromone value from p[i, j] if
a[i, j] is EMPTY and 0 otherwise, when an ant is present. We subtract one
from the indices of gr because we are not including the border. To scale, we
first add 1 to p[i, j] to eliminate the possibility of zero, and then we divide by
(maxp + 1) to obtain a value greater than zero but less than or equal to one.
Finally, to have the larger amounts of chemical be darker, we subtract the
result from one.

for (i in 2:(n+1)){
 for (j in 2:(n+1)) {

11.3 MATLAB QRQ 5

 if (a[i, j] == EMPTY) {
 gr[i-1, j-1] = # most chem->black
 }
 else {
 gr[i-1, j-1] = # make ant lowest value, -> red
 }
 }
 }

g. Write statements to produce an image of gr using the color map map, no
axes, and a box around the image.

Answers to Quick Review Questions

1. a. grid = BORDER*matrix(rep(1,(n+2)*(n+2)),ncol=n+2)
 b. floor(runif(1,1,5))
 c. for (i in 2:n+1){

 for(j in 2:n+1){
 if (runif(1) < probAnt){
 grid[i, j] = floor(runif(1,1,5))
 else
 grid[i, j] = EMPTY
 }
 }
}

2. a. grid = matrix(rep(0,(n+2)*(n+2)),ncol=n+2)
b. i = floor(n/2) + 1

for (j in 1:n){
 grid[mid, i+1] = i/n*MAXPHER;
}

3.
applyDiffusionExtended<-function (matExt, diffusionRate){

n = ncol(matExt) - 2
pherGrid = matExt
for (i in 1:n+1){
 for (j in 2:n+1){
 site = matExt[i, j]
 N = matExt[i-1,j]
 NE = matExt[i-1, j+1]
 E = matExt[i, j+1]
 SE = matExt[i+1, j+1]
 S = matExt[i+1, j]
 SW = matExt[i+1, j-1]
 W = matExt[i, j-1]
 NW = matExt[i-1, j-1]
 pherGrid[i, j] = diffusionPher(diffusionRate,
 site, N, NE, E, SE, S, SW, W, NW)
 }
 }
 return(pherGrid)

}

2. a. sense <- function(site, na, ea, sa, wa, np, ep, sp, wp)

11.3 MATLAB QRQ 6

b. utils::globalVariables(c("STAY", "EMPTY"))
c. if (site == EMPTY){

 direction = EMPTY
}

d. lst = c(np, ep, sp, wp)
e. if (site < STAY){

 lst(site) = -2
}

f. for (i in 1:4){
 if (neighbors[i] > 0){
 lst[i] = -2
 }
}

e. mx = max(lst)
f. if (mx < 0){

 direction = STAY
 }

g. posList = which(lst == mx)
h. lng = length(posList)
i. rndPos = ceiling (runif(1,0,lng))
j. posList[rndPos]
k.

sense = function(site, na, ea, sa, wa, np, ep, sp, wp)
global STAY EMPTY

if (site == EMPTY){
 direction = EMPTY
 return
}

lst = c(np, ep, sp, wp)

don't allow ant to turn to previous cell, so make value artificially
small
if (site < STAY){
 lst(site) = -2
}

don't allow ant to turn to cell with another ant, so make value
artificially small
neighbors = c(na, ea, sa, wa)
for (i in 1:4){
 if (neighbors[i] > 0){
 lst(i) = -2
 }
}

mx = max(lst)
if (mx < 0){
 direction = STAY
}else{
 posList = which(lst == mx)
 lng = length(posList)
 rndPos = ceiling(runif(1,0,lng))
 direction = posList[rndPos]

11.3 MATLAB QRQ 7

}

5. if (antGrid[i, j] != EMPTY)…

6. a. newPherGrid[i, j] = max((newPherGrid[i, j] - EVAPORATE, 0));

b. newPherGrid[i - 1, j]

7. a. antGrids[, , 1] = antGrid

b. antGrids[, , i+1] = antGrid

8. a. m = length(antGrids[1,1,])
b. n = length(antGrids[,1,1]) - 2
c. gr = matrix(rep(0,n*n), nrow=n)
d. a = antGrids[, , k]
e. map = append(rgb(1,0,0),gray(seq(0,1,length=maxp)))
f.

for (i in 2:(n+1)){
 for (j in 2:(n+1)) {
 if (a[i, j] == EMPTY) {
 gr[i-1, j-1] = 1 - (p[i, j]+1)/(maxp+1) # most chem->black
 }
 else {
 gr[i-1, j-1] = 0 # make ant lowest value, -> red
 }
 }
 }

g.
image(gr, col=map, axes=FALSE)
box()

