
10.2 Diffusion: Overcoming Differences

R Quick Review Questions

Introduction to Computational Science:
Modeling and Simulation for the Sciences, 2nd Edition

Angela B. Shiflet and George W. Shiflet
Wofford College

© 2014 by Princeton University Press

This file contains system-dependent Quick Review Questions and answers in R for
Module 10.2 on "Diffusion: Overcoming Differences." Complete all code development
in R.

Initializing the System

Quick Review Question 1 The function to initialize the bar begins as follows:

initBar <-function(m,n,hotSites,coldSites){

a. Give the statement to declare AMBIENT to be a global variable.
b. Assign to bar an m ´ n matrix of all AMBIENT values.
c. The function then calls applyHotCold to establish the hot and cold spots:

bar = applyHotCold(bar, hotSites, coldSites)

 Complete the loop in applyHotCold to make each of the locations indicated by
hotSites have the value HOT.

newbar = bar
for k in 1: {
 bar(hotSites(,),) = HOT;
}

Heat Diffusion

Quick Review Question 2 Suppose the diffusion rate parameter is 0.1 and the
temperatures in the cells are as in Figure 10.2.4. Calculate the temperature in the
center cell at the next time step.

Boundary Conditions

Quick Review Question 3 Answer the following questions about Figure 10.2.4 as an
extremely small entire thermal grid.
a. Give the size of the grid extended to accommodate boundary conditions.
b. Give the values in the first row of the extended matrix assuming fixed

boundary conditions with fixed value 0.
c. Give the values in the first row of the extended matrix assuming reflecting

boundary conditions, where we copy rows first.
d. Give the values in the first row of the extended matrix assuming periodic

boundary conditions, where we copy rows first.

10.2 R QRQ 2

Quick Review Question 4 This question extends an array as in Figure 10.2.8 by
attaching a copy of the first row to the beginning and a copy of the last row to the
end of the original grid to form a new grid, latNS.
a. Give a command to return the last row of matrix lat.
b. Give a command to return the first row of matrix lat.
c. Complete the following statement to make latNS an extended array of lat as

described in this question.

latNS = (lat[],lat,lat[(),])

Quick Review Question 5 This question extends an array as in Figure 10.2.9.
a. Give a command to return the last column of matrix latNS.
b. Give a command to return the first column of matrix latNS.
c. Make extLat a matrix containing the concatenation of the last column of

latNS, latNS, and the first column of latNS.
d. If the original matrix lat is of size 7-by-7, after extending the matrix as in this

and the previous Quick Review Question, give the size of the extended
matrix.

Applying a Function to Each Grid Point

Quick Review Question 6 Suppose extMat is an extended matrix of size 97-by-62.
a. Give the size of the matrix applyDiffusionExtended returns.
b. When i = 33 and j = 25, give the indices of the site's neighbor to the north.
c. For this site, give the indices of its neighbor to the southwest.

Quick Review Question 7 This question develops the function applyDiffusionExtended,
which is to have a diffusion rate parameter (diffusionRate) and an extended array
parameter (latExt) and local variables m, n, site, N, NE, E, SE, S, SW, W, NW, i, and
j and is to begin as follows:

applyDiffusionExtended <- function(diffusionRate,latExt){

a. Write the statement to assign to m the number of rows of the internal (non-
extended) matrix.

b. Write the statement to assign to n the number of columns of the internal (non-
extended) matrix.

c. Write a statement to assign to newmat an m ´ n matrix of zeros.
d. We can use nested for statements to go through every column (index j) and

every row (index i) defining the values of the return matrix, newmat. Within
the body of loops, we assign values to site, N, NE, E, SE, S, SW, W, and NW,
and apply diffusion with these parameters for each internal cell site. To apply
the function diffusion to each internal cell of latExt, we let i (and j) vary
between two values. Give the initial value of i (or j).

e. Give the final value of i.
f. Give the final value of j.
g. Give the first line of the for loop with index j that goes through each internal

column.
h. Give the first line of the for loop with index i that goes through each internal

row.
i. Figure 10.2.11 gives the coordinates of a site and its neighbors. Give the code

to assign to site the value of the (i, j)-element of matrix latExt.

10.2 R QRQ 3

j. Give the code to assign to N the value from latExt corresponding to the
neighbor to the north.

k. Give the code to assign to E the value from latExt corresponding to the
neighbor to the east.

l. Give the complete definition of applyDiffusionExtended.

Simulation Program

Quick Review Question 8 Implement the loop in the diffusionSim function, assuming
grids is a three-dimensional array containing in the first page the initial bar, bar,
which Quick Review Question 1 develops.

Display Simulation

Quick Review Question 9 This question develops the function animDiffusionGray that
produces a grayscale animation corresponding to the grids in a three-dimensional
array (grids), where each page holds a grid for one time step of the simulation.
a. Give the function call to return the number of elements (grids) in grids.
b. Complete the following statement to assign to map levels of gray for each

integer temperature from 0 to HOT inclusive and to make map a color map.

map = (:)

c. Give the statement to assign to local variable g the transposed k-th element in
grids.

d. Complete the command to produce a graphic of g as a rectangular grid with
black representing HOT and white representing COLD.

image(, = map, axes = FALSE);

d. Give the entire definition of animDiffusionGray.

Quick Review Question 10 This question refers to function animDiffusionColor,
which produces a color animation corresponding to each simulation lattice in a list
(grids). Complete the following segment to assign to map levels of gray for each
integer temperature from 0 to HOT inclusive and to make map a color map.

map = 1:(HOT + 1)
for (i in 0:HOT) {
 amt <-
 map[i + 1] <- (, ,)
}
 (map);

Answers to Quick Review Question

1. a. utils::globalVariables(c("AMBIENT"))
b. bar <-AMBIENT*(matrix(c(rep(1,m*n)), nrow = m))
c.

newbar = bar
for(k in 1:length(coldSites[,1])) {
 newbar[coldSites[k,1],coldSites[k,2]]<-COLD
 }

10.2 R QRQ 4

2. 3.6 = (1 - 8 × 0.1)(5) + 0.1(2 + 3 + 4 + 0 + 6 + 1 + 3 + 7)

3. a. 5-by-5
b. 0, 0, 0, 0, 0
c. 2, 2, 3, 4, 4
d. 7, 1, 3, 7, 1

4. a. lat[nrow(lat),]
 b. lat[1,]
 c. latNS = rbind(lat[1,],lat,lat[nrow(lat),])

5. a. latNS[,ncol(latNS)]
 b. latNS[,1]
 c. extLat = cbind(latNS[,1], latNS, latNS[,ncol(latNS)])
 d. 9-by-9

6. a. 95-by-60

b. (32, 25)
c. (34, 24)

7. a. m = length(latExt[,1]) - 2
 b. n = length(latExt[2,]) - 2
 c. newLat = matrix(rep(0,m*n), nrow=m)
 d. 2
 e. m + 1
 f. n + 1
 g. for(j in 2:(n+1)){
 h. for(i in 2:(m+1)){
 i. site = latExt[i, j]
 j. N = latExt[i - 1, j]
 k. E = latExt[i, j + 1]
 l.

applyDiffusionExtended <- function(diffusionRate,latExt){
APPLYEXTENDED - Function to apply
diffusion(diffusionRate, site, N, NE, E, SE, S, SW, W, NW)
site of matrix latExt and to return the resulting matrix
 m = length(latExt[,1]) - 2
 n = length(latExt[2,]) - 2
 newLat = matrix(rep(0,m*n), nrow=m)
 # calculate one column at a time because R is column-oriented
 for(j in 2:(n+1)){
 for(i in 2:(m+1)){
 site = latExt[i, j]
 N = latExt[i - 1, j]
 NE = latExt[i -1, j + 1]
 E = latExt[i, j + 1]
 SE = latExt[i + 1, j + 1]
 S = latExt[i + 1, j]
 SW = latExt[i + 1, j - 1]
 W = latExt[i, j - 1]
 NW = latExt[i - 1, j - 1]

 newLat[i - 1, j - 1] = diffusion(diffusionRate,
 site,N, NE, E, SE, S, SW, W, NW)
 }
 }
return(newLat)
}

10.2 R QRQ 5

8.

diffusionSim = function(m,n,diffusionRate,hostSites,coldSites,t) {
#Declare global variables hot,cold and ambient.
Initialize grid

bar = initBar(m,n,hotSites,coldSites)
bar
Perform simulation

grids<-array(0, dim=c(m,n,t+1))
grids[,,1]<-bar

for(i in 2:(t+1)) {

Extend matrix
 barExtended = reflectingLat(bar)
Apply spread of heat function to each grid point
 bar = applyDiffusionExtended(diffusionRate,barExtended)
reapply hot and cold spots
 bar = applyHotCold(bar,hotSites,coldSites)
save new Matrix
 grids[,,i]<-bar

 }
return(grids)
}

9. a. dim(graphList)[3]
 b. map = gray(0:HOT / HOT)

c. g = t(graphList[,,k])
d. image(HOT - g + 1, col = map, axes = FALSE)

 d. M(k) = getframe;
e.

animate grids in gray with HOT being black, COLD more white
animDiffusionGray<- function(graphList){
 utils::globalVariables(c("HOT"))
 lengthGraphList = dim(graphList)[3]

 # set up grayscale map
 map = gray(0:HOT / HOT)

 m = dim(graphList)[1]
 n = dim(graphList)[2]

 # determine window size
 # 1.6 is approximately the golden ratio; so cell pictured as square
 fraction = n/m;
 dev.new(width = 2 * fraction, height = 2 * 1.6)

 for(k in 1:lengthGraphList) {
 dev.hold()
 g = t(graphList[,,k]) # transpose because of following comment

#"image interprets the z matrix as a table of f(x[i], y[j]) values, so
that the x axis corresponds to row number and the y axis to column
number, with column 1 at the bottom, i.e. a 90 degree counter-clockwise
rotation of the conventional printed layout of a matrix."

 # first row's image is on bottom, unlike figures in text
 image(HOT - g + 1, col = map, axes = FALSE)
 box()

10.2 R QRQ 6

 Sys.sleep(0.1)
 dev.flush()
 }
}

10.
map <- 1:(HOT + 1)
for (i in 0:HOT) {
 amt <- i/HOT
 map[i + 1] <- rgb(amt, 0, 1-amt) # red-green-blue amounts
 }

