

2.1 – R System Dynamics Tutorial 1

Introduction to Computational Science:
Modeling and Simulation for the Sciences, 2nd Edition

Angela B. Shiflet and George W. Shiflet
Wofford College

© 2014 by Princeton University Press

R materials by Stephen Davies, University of Mary Washington
stephen@umw.edu

Getting familiar with R

Follow the rest of that R Computational Toolbox tutorial, RCTTutorial1, answering all
quick-review questions as you go. That tutorial walks you through the basics of R
programming, including variables, vectors, functions, control structures, and everything
else you need to know to get off the ground. The rest of this System Dynamics tutorial
presupposes that you have completed that Computational Toolbox tutorial.

Using R for System Dynamics Problems

As described in the book, a System Dynamics problem presents itself as a complex
interaction of different variables over time. Our goal in understanding such a system is to
formulate a model of it and then simulate the model. The results of the simulation will
give us a good idea about how the complex system will act over time when it is given
certain initial conditions. Even simple looking models are often not possible to solve
analytically, and hence the simulation tells us something that is not feasible to determine
any other way.

There are two general approaches to creating such models and simulations. One
approach is to use a specialized System Dynamics tool (such as Berkley Madonna,
Vensim, or STELLA) that lets us draw diagrams of system components and then
interprets our pictorial syntax to perform the simulation. The other approach is to use a
general-purpose programming language (such as R, Python, or Java) that lets us write the
simulation code directly, using variables, functions, and loops. There are advantages to
both approaches. One advantage to using a specialized tool is that learning to draw
diagrams can be a somewhat easier task for beginners than writing code. One advantage
to using a general-purpose programming language is that it is more generic and flexible,
giving us more freedom to control our simulation and refine it in ways that a System
Dynamics tool designer might not have envisioned. We can also gain more insight into
the details of the simulation, since all aspects of it are visible to us and modifiable, rather
than being hidden behind the simplified diagrammatic elements a System Dynamics tool
provides us with.

This tutorial is about using R — a general-purpose programming language — to write
simulation programs to solve System Dynamics problems. Following this approach will
give you valuable skills that enable you to go beyond what a specific tool designer may
have equipped you with and to tackle a large variety of computational science problems

RSD Tutorial 1 2
(System Dynamics or otherwise) in the same way. The cost for doing this is that we need
to take care of some of the details ourselves that a System Dynamics tool might have done
for us. It’s kind of like getting the extra control and performance that a stick-shift
automobile gives the driver, rather than the simplicity yet limited nature of an automatic
transmission. It’s a little steeper learning curve, but once you learn to drive it, you can
drive this car anywhere — you can’t solve a cellular automata problem or simulate a
queueing system in Berkley Madonna, but you can do both and much more in R.

Writing System Dynamics Simulation Programs: Components

The main task in writing an R simulation is to turn a system dynamics diagram (like
Figure 2.5.1 in the book) into a running program. Hence this tutorial will concentrate on
translating such diagrams into code.

First, some basic terminology and concepts about these system dynamics diagrams
(also sometimes called relationship diagrams, or stock-and-flow diagrams):

• stock variable.

These are represented on the diagram by boxes. A stock variable is typically
something that accumulates as time goes on: it is a quantity that goes up or down in
value, and we want to track how it changes over time. For this reason, we will
normally use a vector to represent it, so that its value at each moment in time can be
preserved.

• derived stock variable.
These are represented on the diagram by any white circle that has an incoming arrow
from a box (or from another derived stock variable). If a white circle has an
incoming arrow from a box, then it is essentially another stock variable: we are
interested in tracking how it accumulates or decreases over time. The only way in
which it differs from a box is that its value is usually based on a simple calculation
from a box. Hence, we can give our main attention to tracking the box’s value as it
changes throughout the simulation and then make a simple conversion of those
values to obtain the derived stock variable’s values. For the same reason as above, a
derived stock variable will normally be a vector of values.

• (ordinary) variable.
These are represented on the diagram by white circles that do not have incoming
arrows from boxes (or from other derived stock variables). Each one will correspond
to a scalar variable in the program. Some of these might have constant (unchanging)
values, while others will represent quantities that change over time. For each of
them, however, the program only needs to keep track of a single “current” value as
the simulation progresses, not a whole array of values. Hence we will represent it in
our simulation program as a scalar.

• flow.
Finally, a flow is depicted on the diagram by a gray oval. It represents a quantity
whose value will change over time, and which will influence the value of some stock
variable. Though it is a scalar, it is a dynamic (changing) quantity, and hence will be
continually computed in the main loop of the simulation in order to help properly
calculate the values of the stock variable it influences.

Quick Review Question 1 Consider Figure 2.5.1 of the book. Which of the symbols in

RSD Tutorial 1 3
the figure correspond to stock variables? Ordinary variables? Derived stock variables?
Flows?

Writing System Dynamics Simulation Programs: Outline of Basic Procedure
The basic idea behind a computational simulation is to run through a loop a certain
number of times, each time simulating one “tick” on a virtual clock. In other words, each
time through the loop represents a (short) period of time, during which the important
characteristics of the system (stored in program variables) may change. Often we wish to
keep track of a particular variable’s values over time, so that when the simulation is over
we can look back and see its general trend as the simulation progressed. This is an ideal
use for vectors (arrays) since they can store multiple, successive values at once.

To write an R program to simulate a system depicted in a stock-flow diagram, follow
this general procedure:

1. Identify the circles with no incoming arrows at all. If a circle represents a constant

(unchanging) value, then create a program variable to represent it. (Be careful of
units.)

2. Identify all the circles whose only incoming arrows are from the circles already
defined as variables in your program. Create a variable to represent each one, using a
formula. (Be careful of units.) Repeat this step until the only circles left have
something besides a circle pointing to them.

3. Create a vector (array) for each stock variable (box). Set the first value of this vector
to its initial condition (i.e., its value when the simulation begins).

4. Run through the simulation loop for the specified total time and time increment. Each
time through the loop:

a. Determine the (temporary) values of any flows and remaining ordinary
variable(s). Depending on the nature of the circle/oval, this could be (a) an
equation based on current values of other circle(s) and/or stock variables, (b) a
special value based on the current time (for instance, a “pulse” variable that takes
on certain values at specific “clock ticks”) or other things.

b. Set the next value for each vector to its new value on the next clock tick.

5. For any derived stock variable that has not been defined yet, use a formula to create
it based on its incoming arrows. Note that since at least one of these incoming
arrows is from a stock variable (which is a vector), this circle’s variable will also be
a vector.

6. Finally, plot any vector(s) of interest.

Example: Drug Dosage (Single-Dose)

Let’s follow this procedure for a specific example. From Module 2.5, "Drug Dosage,"
read sections "Introduction" and "One-Compartment Model of Single Dose;" then look
carefully at the diagram describing the drug dosage system in Figure 2.5.1. Notice that

RSD Tutorial 1 4
there are six elements in this diagram. One of them — “aspirin in plasma” — is a stock
variable. Three of them — “half life,” “plasma volume,” and “elimination constant” —
are ordinary variables. The first two of these three are ordinary variables because they
have no incoming arrows at all. The last of the three ("elimination constant") is also an
ordinary variable because it has no incoming arrow from a box, only from another circle.
One element — “elimination” — is a flow. Finally, “plasma concentration” is a derived
stock variable because it has an incoming arrow from another box variable.

Translating this into an R simulation program is a combination of following the
outlined procedure, and using our heads. We begin:

1. Identify the circles with no incoming arrows at all. If a circle represents a constant

(unchanging) value, then create a program variable to represent it. (Be careful of
units.)

The circles with no incoming arrows are “half life” and “plasma volume.” From the
problem description, we realize that both of these are simple constants: 3.2 hours,
and 3000 ml, respectively. Hence, at the top of our R program, we will define these:

halfLife = 3.2 # hr
plasmaVolume = 3000 # ml

(Note that we have added small comments to the right of each line, documenting the
units that the variable is in. This is a good practice to get into, since making incorrect
unit conversions or assumptions is a common error.)

2. Identify all the circles whose only incoming arrows are from the circles already
defined as program variables. Create a variable to represent each one, using a
formula. (Be careful of units.) Repeat this step until the only circles left have
something besides a circle pointing to them.

We have one circle whose only incoming arrow is from a previously defined
variable: elimination constant. Hence, following the formula given in Equation Set
2.5.1, we write:

eliminationConstant = -log(0.5)/halfLife # 1/h

Recall that in R, log() is the function to perform a natural logarithm. Note the
comment “1/h” at the end of this line; this indicates that the elimination constant is
in the units of “per hours.”

3. Create a vector (array) for each stock variable (box). Set the first value of this vector
to its initial condition (i.e., its value when the simulation begins.)

We have one stock variable, so we create a vector for it:

aspirinInPlasma = vector()

Then, we initialize the first value of that vector to be its value at the start of the
simulation:

aspirinInPlasma[1] = 2 * 325 * 1000 # ug

RSD Tutorial 1 5
These two lines of code create a vector called aspirinInPlasma, which will hold all
the values over time as the simulation runs. Each of the values in this vector will
have units of µg (micrograms).

4. Run through the simulation loop for the specified total time and time increment.

We need to decide two basic things about our simulation: (1) how long (in simulated
time) will it run for? (2) how much simulated time will elapse between each virtual
“tick of the clock?” These two choices are rather arbitrary at this point, but they
affect the amount of memory your program requires as it runs, and ultimately, its
speed. For now, we’ll simulate 8 hours of the patient’s body, and set our
“granularity” to five minutes:

simulationHours = 8 # h
deltaX = 5/60 # h
x = seq(0,simulationHours,deltaX)

The variable deltaX (written mathematically as Dx) is our granularity, set to 5
minutes. The x values in this vector mean that every iteration through our loop
represents five minutes of time. Put another way, we will be recomputing the
concentration of aspirin in the patient’s blood every five minutes. We now write the
loop itself:

for (i in 2:length(x)) {

This line needs some explanation. First, it establishes a variable called i whose value
will change each time through the loop. It will change to be the successive values in
the vector specified after the word “in,” which begins at 2, and goes up to one
greater than the number of clock ticks in the simulation. With the values mentioned
above, this works out to be 2 through 97. This is because our simulation will run for
96 clock ticks of 5 minutes each, for a total of 480 minutes, or 8 hours. Note that

the variable i will take on values 2, 3, 4, ..., 97. It will not have values h, h,

h, ..., h. The latter is the job of the elements of the x vector, not i variable. i
does not represent a time value, but simply an iteration number, and a vector index.
The sequence 5, 10, 15, ... does represent the time (in minutes) corresponding to
each point of the simulation: the first iteration through the loop, when i = 2,
represents the time 5 minutes; when i = 3, the time is 10 minutes; and so on.

The reason we start our loop with i equal to 2 is that we have already set up the
initial condition aspirinInPlasma[1] = 2 * 325 * 1000. In the loop, then, we need
to begin by computing aspirinInPlasma[2] based on aspirinInPlasma[1], then
aspirinInPlasma[3] based on aspirinInPlasma[2], and so forth. Clearly, we need
to begin the process with element number 2.

Quick Review Question 2 Suppose simulationHours had the value 40 hours and
deltaX had the value 10/60 hours (10 minutes).

5
60

10
60

15
60

480
60

RSD Tutorial 1 6
a. How many times would the loop body be executed?

b. What would the value of i be for each of those iterations?

c. What would each value of the x vector be?

d. What value of time (in minutes) would each iteration represent?

e. What value of time (in hours) would each iteration represent?

Incidentally, converting back-and-forth between i (the index value into the vector)
and x (the actual time value) is so common and useful that it’s a good idea to define
a pair of functions at the top of our file to convert each way:

xtoi = function(x) x/deltaX + 1
itox = function(i) (i-1)*deltaX

This isn’t strictly necessary, but it can make life easier, since there are times when
we’ll want to know what time value a particular vector element corresponds to, and
vice versa.

Now we move on to the body of the loop.

Each time through the loop:

a. Determine the (temporary) values of any flows and remaining ordinary
variable(s). Depending on the nature of the circle/oval, this could be (a) an
equation based on current values of other circle(s) and/or stock variables, (b) a
special value based on the current time (for instance, a “pulse” variable that takes
on certain values at specific clock ticks) or other things.

We have only one flow: “elimination.” (Recall that “plasma concentration” is a
derived stock variable.) Hence, inside the body of the loop, we compute its value:

 elimination =
 (eliminationConstant * aspirinInPlasma[i-1]) * deltaX

Consider this line of code carefully. It uses the formula given in Equation Set
2.5.1, with a couple of twists. First, we are computing the elimination amount at
step i of the simulation. This requires using the amount of aspirin present in the
plasma at the previous iteration, which is why we use i-1 inside the “[]” symbols
after the vector name. This is the common pattern of computing a new value
based on a previous value. Second, we multiply by the time increment because
each step in the iteration represents a certain amount (in our example, 5 minutes)
of time. Hence, the amount of elimination that will occur during a simulated
clock tick is, say, five-minutes’ worth, and this must be accounted for.

b. Set the next value for each vector to its new value on the next clock tick.

 aspirinInPlasma[i] = aspirinInPlasma[i-1] – elimination

In this first simple simulation, we are assuming only a single dose, and
instantaneous absorption of the aspirin. Therefore, the only thing that affects the

RSD Tutorial 1 7
amount of aspirin in the plasma each clock tick is the amount that is eliminated.
Note carefully the vector indexes in this line of code. We are setting
aspirinInPlasma[i] to a value based on aspirinInPlasma[i-1]. This means we
are using the previous value of the aspirin in plasma (at vector position i-1) to
compute the next value (at vector position i.)

We can now end our loop:

}

5. For any derived stock variable that has not been defined yet, use a formula to create
it based on its incoming arrows. Note that since at least one of these incoming
arrows is from a stock variable (which is a vector), this circle’s variable will also be
a vector.

At this point, we have accomplished a great deal — nearly our whole purpose. The
aspirinInPlasma vector now contains values corresponding to the amount of
aspirin in the patient’s plasma that was present at five-minute increments over a
period of 8 hours. All we need to do now is compute the concentration of the aspirin
over that time, and plot it. First, we compute the concentration of the aspirin:

plasmaConcentration = aspirinInPlasma / plasmaVolume # ug/ml

using the formula in Equation Set 2.5.1.

6. Finally, plot any vector(s) of interest.

And finally, we create a plot:

plot(plasmaConcentration)

For reference, here is the entire program:

halfLife = 3.2 # h
plasmaVolume = 3000 # ml
eliminationConstant = -log(0.5)/halfLife # 1/h
aspirinInPlasma = vector()
aspirinInPlasma[1] = 2 * 325 * 1000 # ug
simulationHours = 8 # h
deltaX = 5/60 # h
x = seq(0,simulationHours,deltaX)
for (i in 2:length(x)) {
 elimination =
 (eliminationConstant * aspirinInPlasma[i-1]) * deltaX
 aspirinInPlasma[i] = aspirinInPlasma[i-1] - elimination
}
plasmaConcentration = aspirinInPlasma / plasmaVolume # ug/ml
plot(plasmaConcentration)

This program, with further comments and some additional variables defined for
flexibility and good programming style, is available on the book’s website (Module 2.5).

RSD Tutorial 1 8
Enhancing plots

The plot produced by the above program is very “bare bones”; it would be more
informative to add labels and appropriate values for the x and y axis ranges. We can give
values to plot’s main, xlab, and ylab parameters to set the text for the overall plot and
for the axes. To specify the boundaries (limits) for the y axis, we can set ylim parameter
to a 2-element vector containing our lower and upper bounds. We’ll get a smooth line plot
by specifying “type="l".” Finally, we’d like the x axis to show time, rather than iteration
number, which we can create by using the seq function to create a vector from 0 to 8 (the

number of hours) by (the time increment in hours). Our final version looks like

this:
plot(x = x,
 y = plasmaConcentration,
 type = "l",
 xlab = "hours",
 ylab = "plasma concentration (ug/ml)",
 ylim = c(0,500), # min and max of y-axis
 main = "Aspirin concentration over time")
}

Another way to make a plot more informative is to identify important boundary values.
R provides the function abline() which allows you to add a straight line (of any
thickness, style, or color) to a plot. This is useful for visually indicating significant
thresholds for values.

The simplest form of abline() takes two parameters: the y-intercept and the slope of
the line (in that order). We can also add a parameter col to indicate the color of the line
we want to draw. (Type “?abline” at the R prompt to get more information about the
abline() function.)

The book mentions the minimum effective concentration (MEC) and the maximum
therapeutic concentration (MTC) as two important values for a particular medication. For
aspirin, MEC is about 150 µg/ml and MTC is about 350. We can enhance our plot with a
blue line to show the MEC and a red line to show the MTC by adding the following
commands after calling the plot() function:

abline(150,0,col="blue")
abline(350,0,col="red")

This produces the plot in Figure 1. From this graph, we can see that while the patient
has thankfully not gotten close to the MTC range, his aspirin has probably become
ineffective after only about 2 hours. Hence, another dose may be called for (see below.)

5
6 0t h s

RSD Tutorial 1 9

Figure 1: Plot for single-dose aspirin simulation.

Example: Drug dosage (Repeated Doses, Module 2.5)

We’ve gone through this first example in great detail. Now let’s add some complexity to the
model by simulating repeated doses.

Read the section "One-Compartment Model of Repeated Doses" in Module 2.5. Then, study
carefully the stock-and-flow diagram in Figure 2.5.3. We will again follow the generic procedure
(with less detail) to write a simulation program for this problem:

1. Identify the circles with no incoming arrows at all. If a circle represents a constant

(unchanging) value, then create a program variable to represent it. (Be careful of units.)

The circles with no incoming arrows are “MEC,” “MTC,” half life,” “volume,” “dosage,”
“absorption fraction,” “interval,” and “start.” All of these are simple constants:

mec = 10 # ug/ml
mtc = 20 # ug/ml
halfLife = 22 # h
volume = 3000 # ml
dosage = 100 * 1000 # ug
absorptionFraction = 0.12 # (unitless)
interval = 8 # h
start = 0 # h

It turns out that we will not need to use “start,” so it is superfluous. (Our initial dosage will

RSD Tutorial 1 10
automatically occur on the first clock tick.)

2. Identify all the circles whose only incoming arrows are from the circles already defined as
program variables. Create a variable to represent each one, using a formula. (Be careful of
units.) Repeat this step until the only circles left have something besides a circle pointing to
them.

As before, “elimination constant” is the only relevant circle here:

eliminationConstant = -log(0.5)/halfLife # 1/h

3. Create a vector (array) for each stock variable (box). Set the first value of this vector to its
initial condition (i.e., its value when the simulation begins.)

We again have only one stock variable, which we create and initialize:

drugInSystem = vector()
drugInSystem[1] = absorptionFraction * dosage

Notice that we must set the first value of the vector to be the absorption fraction times the
dosage, since not all of the medicine is actually absorbed into the patient’s system.

4. Run through the simulation loop for the specified total time and time increment.

We’ll run the simulation for a week at 2-minute intervals:

simHrs = 168 # hr
deltaX = 2/60 # hr
x = seq(0,simulationHours,deltaX)

These variables set us up to begin our loop. Note that we have defined a vector x which will
contain all of the time values (in hours or parts of an hour) of the simulation. The following
lines, then, actually begins the loop:

for (i in 2:length(x)) {

Each time through the loop:

a. Determine the (temporary) values of any flows and remaining ordinary variable(s).
Depending on the nature of the circle/oval, this could be (a) an equation based on current
values of other circle(s) and/or stock variables, (b) a special value based on the current
time (for instance, a “pulse” variable that takes on certain values at specific clock ticks)
or other things.

This is the step that is most different from the previous example. From Figure 2.5.3, we
can see that there are two flows affecting how much drug is in the system: the amount
ingested, and the amount eliminated. (We can see this because the stock variable has two
gray lines coming into it, one from each of these quantities.) Determining how much is
eliminated in each time step is the same as before. Determining the amount ingested,
however, is different.

We recognize that the patient will be taking a dose of Dilantin every interval hours. So
we need to write code that says, “if we have reached a multiple of interval hours, ingest

RSD Tutorial 1 11
one dose during this time step. Otherwise, don’t ingest anything right now.” There are
several ways to write this code, but the easiest is probably:

 if (itox(i) %% interval == 0) {
 ingested = absorptionFraction * dosage
 } else {
 ingested = 0
 }

Look carefully at that if statement. It calls the itox() function we defined earlier, for
determining what real-world time value a particular index corresponds to. It also contains
the “%%” operator, which you may recall gives the remainder when performing division
of integers. For instance, if you ask R to calculate “11 %% 8” it will give the answer 3,
since 11 divided by 8 is 1 with a remainder of 3. Similarly, if you ask for “16 %% 8” R
will respond with 0, since 8 divides 16 evenly and has no remainder.

Quick Review Question 3 Review the meaning of the %% operator by typing “6 %% 3,”
“7 %% 3,” “8 %% 3,” and “9 %% 3” at the R console, and seeing the results.

We use this trick to determine the simulation points for the 8-hour intervals. If we take
the time of each clock tick in hours (which is what tox(i) gives us — confirm this for
yourself), and it is a multiple of exactly 8 hours, then we will set a variable called
ingested to be equal to a new dose. In all other cases, we will set this variable to 0. This
gives us a “pulse” effect, as desired.

Quick Review Question 4 Suppose deltaX is equal to 30/60, and interval is equal to
12. For what values of i is “itox(i) %% interval” equal to 0?

Computing the amount eliminated in a time step is the same as before:

 eliminated =
 (eliminationConstant * drugInSystem[i-1]) * deltaX

b. Set the next value for each vector to its new value on the next clock tick.

Finally, we add in the amount ingested and subtract the amount eliminated for this clock
tick, and end our loop:

 drugInSystem[i] = drugInSystem[i-1] + ingested - eliminated
}

5. For any derived stock variable that has not been defined yet, use a formula to create it based
on its incoming arrows. Note that since at least one of these incoming arrows is from a stock
variable (which is a vector), this circle’s variable will also be a vector.

concentration = drugInSystem / volume

6. Finally, plot any vector(s) of interest.

plot(
 x = x,
 y = concentration,
 type = "l",

RSD Tutorial 1 12
 xlab = "hours",
 ylab = "concentration (ug/ml)",
 ylim = c(0,20),
 main = "Dilantin concentration over time")
abline(mec,0,col="blue")
abline(mtc,0,col="red")

For reference, here is the entire program:

__

mec = 10 # ug/ml
mtc = 20 # ug/ml
halfLife = 22 # h
volume = 3000 # ml
dosage = 100 * 1000 # ug
absorptionFraction = 0.12 # (unitless)
interval = 8 # hr

eliminationConstant = -log(0.5)/halfLife # 1/h

drugInSystem = vector() # ug
drugInSystem[1] = absorptionFraction * dosage

simHrs = 168 # h
deltaX = 2/60 # h
x = seq(0,simHrs,deltaX)

xtoi = function(x) x/deltaX + 1
itox = function(i) (i-1)*deltaX

for (i in 2:length(x)) {
 if (itox(i) %% interval == 0) {
 ingested = absorptionFraction * dosage
 } else {
 ingested = 0
 }
 eliminated =
 (eliminationConstant * drugInSystem[i-1]) * deltaX
 drugInSystem[i] = drugInSystem[i-1] + ingested - eliminated
}

concentration = drugInSystem / volume

plot(
 x = x,
 y = concentration,
 type = "l",
 ylim = c(0,25),
 xlab = "hours",
 ylab = "concentration (ug/ml)",
 main = "Dilantin concentration over time")
abline(mec,0,col="blue")
abline(mtc,0,col="red")

A slightly embellished version of this program is available on the book’s website (Module
2.5).

RSD Tutorial 1 13

Figure 2: Plot for multiple-dose Dilantin simulation.

Experimentation

One of the great values of computational simulation is the ability to modify a model’s
parameters and see the effect. Experiment with the repeated doses program. Download
the starter code from the website (at http://wofford-
ecs.org/IntroComputationalScience/dataFilePages/dataFiles/RSD.zip, save
it, unzip, and run the program in R, verifying that you get a plot that looks like the one in
Figure 2. Then, experiment with it in the following ways (remember that every time you
make a change to the program, you must save the .R file before re-running it):

• Suppose the patient is a child, whose plasma level is only 1500 ml. Would the

dosage schedule from the original file result in the child surpassing the MTC? If so,
how quickly would the MTC be reached?

• If such a child took 60 mg doses in place of the 100 mg doses, would this alleviate
the problem?

• Suppose this medication can only be obtained in 100 mg doses that cannot be easily
divided. If the child took the drug only once per day, what effect would that have?

