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1 Introduction 

We recommend that you work through this tutorial with a copy of R, answering all Quick 
Review Questions as you go.  

The prerequisite to this tutorial are “R Computational Toolbox Tutorial 1” and “R 
Computational Toolbox Tutorial 2.” Before proceeding, follow those tutorials in their 
entirety, including installing R on your system and answering all Quick Review 
Questions as you go. Tutorial 3 prepares you to use R for material in this and subsequent 
chapters. It introduces the following functions and concepts: vector operations, transpose; 
additional graphics options, such as for equal axes, plotting area, line width, and line 
style; fitting; rule substitutions; reading data files; and logarithms.  
 

2 Vector operations 

Vectors are essential to R, and we can perform operations on entire vectors. To perform 
addition, subtraction, multiplication, division, or exponentiation of a scalar (number) by 
every element in a vector, we use the usual operator of +, -, *, /, or ^, respectively. For 
example, consider the following vector:  

 
> vec = seq(4, 5.2, .3)  
> vec  
[1] 4.0 4.3 4.6 4.9 5.2  
 

The following input statements (in red) perform the same operation on every element 
of vec, returning the appropriate output array (in blue) without changing the value of vec:  

 
> vec + 10  
[1] 14.0 14.3 14.6 14.9 15.2  
> 3 + vec  
[1] 7.0 7.3 7.6 7.9 8.2  
> vec - 5  
[1] -1.0 -0.7 -0.4 -0.1 0.2  
> vec * 10  
[1] 40 43 46 49 52  
> vec / 10  
[1] 0.40 0.43 0.46 0.49 0.52  
> vec ^ 3  
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[1] 64.000 79.507 97.336 117.649 140.608  
> 2 ^ vec  
[1] 16.00000 19.69831 24.25147 29.85706 36.75835  
 

To change the value of vec, we must assign the result of an operation to vec, such as 
follows:  

 
> vec = vec * 10  
> vec  
[1] 40 43 46 49 52  
 

These techniques apply not only to 1-dimensional vectors, but also to multi-
dimensional matrices and arrays. For example:  

 
> mat = matrix(c(3,5,2,4,4,1),nrow=3)  
> mat  
      [,1] [,2]  
[1,]     3    4  
[2,]     5    4  
[3,]     2    1  
> mat + 7  
      [,1] [,2]  
[1,]    10   11  
[2,]    12   11  
[3,]     9    8  
 

As the following Quick Review Question illustrates, we can also apply other 
functions, such as the square root function (sqrt()), that operate on a single number to 
every element of a vector.  

Quick Review Question 1 Create a new script / program file. In opening comments, put 
“R CT Tutorial 3 Answers” and your name. Save the file under the name 
RCTTutorial3.R. In the file, preface this and all subsequent Quick Review 
Questions with a comment that has “QRQ” and the question number, such as 
follows:  

 
# QRQ 1 
  

a. With one assignment statement, make qrq be a 2-by-4 matrix of all zeros.  

b. With one assignment statement, make the first row of qrq be the sequence of 
positive integers 1, 3, 5, 7.  

c. Return the product of 3 by every element of qrq without changing qrq.  

d. Return the square root of every element of qrq without changing qrq.  

e. Add 2 to every element of qrq, changing the value of qrq to hold those increased 
numbers.  
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If two arrays1 have the same dimensions, we can perform operations that combine 
corresponding elements, using the typical operators +, -, *, /, and ˆ. If you’ve had linear 
algebra before, note that the * operator performs an element-by-element 
multiplication, not matrix multiplication. The matrix multiplication operator is %*% 
(all three symbols typed in a row).  

The following statements illustrate these operations using vec and another five-
element vector:  

 
> vec = c(40,43,46,49,52)  
> vec2 = c(3,-1,0,8,1)  
> vec * vec2  
[1] 120 -43 0 392 52  
> vec2 / vec  
[1] 0.07500000 -0.02325581 0.00000000 0.16326531 0.01923077  
> vec ^ vec2  
[1] 6.400000e+04 2.325581e-02 1.000000e+00 3.323293e+13 5.200000e+01  
 

The last result includes entries in scientific notation, since the numbers were so large (
 is a large number indeed). When R prints a number like “5.3e+6”, this means “5.3 

´ 106”. (The “e” stands for “exponent” and does not indicate the constant e  ≈ 2.71828.) 
So the fourth entry in the above vector is the value 3.323293 ´ 1013.  

Many functions in R can combine the values in a vector. For example, the function 
sum() returns the sum of all the elements in a vector:  

 
> vec = c(40,43,46,49,52)  
> sum(vec)  
[1] 230  
 

Other similar functions include max(), min(), prod(), mean(), and sd() (for 
“standard deviation”). Experiment with these to see their effects. All of these functions 
work on multi-dimensional arrays as well as vectors, too:  

 
> mat = matrix(c(5,3,8,4,3,6),nrow=3)  
> mat  
      [,1] [,2]  
[1,]     5    4  
[2,]     3    3  
[3,]     8    6  
> sum(mat)  
[1] 29  
> max(mat)  
[1] 8  
> mean(mat)  
[1] 4.833333  

Quick Review Question 2 
a. With one assignment statement, make qrq2 a 2-by-4 array of all zeros.  

b. With one assignment statement, make the first column of qrq2 contain ones.  
                                       
1 Or vectors (recall that a vector is just a one-dimensional array). 
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c. Make the first row, third element of qrq2 be 5.  

d. Display qrq.  

e. Without changing either array, obtain the sum of qrq and qrq2.  

f. Return an array where corresponding elements of qrq and qrq2 are multiplied.  

g. Define a new user-defined function sqr() to square a parameter. The function should 
work for numeric and vector arguments.  

h. Using sqr from Part g, return a vector with every element of qrq squared.  

i. Give a command to return the sum of the squares of the elements of qrq. 

3 Combining and Transposing Arrays 

Sometimes we have separate vectors of numbers that we need to combine. An example 
would be if we had a vector of x-coordinates and a vector of y-coordinates, and we 
wanted to combine them to get a matrix of ordered pairs, where each row represented one 
ordered pair (x,y). Suppose for an hour a scientist measures amounts (in milligrams) of 
residues from a chemical reaction every 12 minutes, or 0.2 hours. The following 
command assigns to tlst the list of times:  

 
> tlst = seq(0,1,.2)  
> tlst  
[1] 0.0 0.2 0.4 0.6 0.8 1.0  
 

The following rlst is a list of residue measurements:  
 
> rlst = c(0,.05,.16,.23,.55,1)  
 

We can use the cbind() function (for “column bind”) to bind these two vectors 
togethers as columns of a matrix:  

 
> combinedlst = cbind(tlst,rlst)  
> combinedlst  
      tlst rlst  
[1,]   0.0 0.00  
[2,]   0.2 0.05  
[3,]   0.4 0.16  
[4,]   0.6 0.23  
[5,]   0.8 0.55  
[6,]   1.0 1.00  
 

We now have one time/residue ordered pair per row.  
Another useful operation is to take the transpose of a matrix. A matrix’s transpose is 

just the same matrix with the rows and columns interchanged: what were the rows 
become the columns, and vice versa. In R, the t() function performs the transpose:  

 
> t(combinedlst)  
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      [,1] [,2] [,3] [,4] [,5] [,6]  
tlst     0 0.20 0.40 0.60 0.80    1  
rlst     0 0.05 0.16 0.23 0.55    1  
 

Note that R preserves the names of the original rows, which is handy for interpreting data 
once you’ve combined it.  

Quick Review Question 3 Write a statement to generate a list xlst of x-values, which are 
positive integers from 1 through 9. Using one assignment statement, have glst store 
the corresponding values of . Write commands to assign to pairslst the array 
of ordered pairs with one ordered pair per row.  

4 Reading from files 

Files can store huge amounts of data and simplify input. Links to data files for various 
projects appear on the textbook’s website. For example, Module 8.3 on “Empirical 
Models” uses the file DanWoodEM.dat, which appears in Table 1, and several much 
larger files, all with rectangular arrays of tab-delimited data.  

 
1.309 2.138 
1.471  3.421 
1.49  3.597 
1.565  4.34  
1.611  4.882 
1.68  5.66  

Table 1 DanWoodEM.dat 
 
The R function read.table() can read such a file of numbers. One form of the 

command is as follows:  
 
data = read.table("Filename")  
  

The file name appears in double quotes. Normally it has an extension such as .dat or .txt 
or .tsv. For files that have comma-separated (instead of tab-separated) data, the extension 
is normally .csv. This is a format that Microsoft Excel can save a spreadsheet in, for 
instance.  

When we run the command above, we get back a data frame called “data”. (Note 
that “data” was an arbitrary name — we could have called the data frame anything.) A 
data frame is kind of like a matrix, except that its columns are labeled:  

 
> danwood = read.table("DanWoodEM.dat")  
> danwood  
     V1    V2  
1 1.309 2.138  
2 1.471 3.421  
3 1.490 3.597  
4 1.565 4.340  
5 1.611 4.882  

3 x
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6 1.680 5.660 
  

Printing the value of danwood shows the rows labeled 1 through 6, and the columns 
labeled “V1” and “V2” (for “variable 1” and “variable 2.”)2  

The data file must be in the same folder/directory where your R script file is, or else 
you must specify the full path name of the file.  

5 Fit 

In Module 8.3 on “Empirical Models,” we investigate discovering functions that capture 
the trend of data. To do so, we employ the R function lm() (which stands for “linear 
model.”) The form of a call to lm() is as follows:  

 
model = lm("formula", data=dataframe)  
  

The “formula” is a way of telling R the general form of the function we want it to fit to 
the data. (Again, “model” is an arbitrary name that we give to the result of calling 
lm().) Suppose we want to obtain the best-fit line — i.e., the straight line which best 
approximates the data. We would type:  

 
> bestline = lm(V2 ~ V1, data=danwood)  
 

The formula “V2 ~ V1” says “create a model of the V2 variable based on the V1 
variable.” The “data=danwood” part says “the data frame I want you to use is in the 
variable called danwood.”  

The coefficients of this actual line can be obtained by typing bestline$coefficients 
(this is a dollar-sign between the name of the variable and the word “coefficients”):  

 
> bestline$coefficients  
(Intercept)          V1  
 -10.426961    9.489346  
 

The y-intercept is -10.426961, and the coefficient of the V1 variable (i.e., the slope) is 
9.489346. Therefore, the best fit line has equation y = 9.489346x – 10.426961.  

Let’s plot the line, and compare it with the actual data points. First, plot the data points 
themselves:  

 
> plot(danwood)  
 

This results in the plot in Figure 1. Now, to add the best-fit line to the plot, we do the 
following:  

                                       
2 Often a comma-separated-value (.csv) file will have the names of the variables on the first line. The R 
command read.csv("Filename.csv", header=TRUE) can be used to read such a file, and the columns of the 
resulting data frame will then be named properly. 
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Figure 1 The points in the DanWoodEM.dat file.  

 
> xvals = seq(1.3, 1.7, .01)  
> yvals = bestline$coefficients %*% rbind(1,xvals)  
> lines(xvals, yvals, col="blue")  
 

This adds the best-fit line (in blue), giving the plot in Figure 2. The second line of code, 
above, is a bit tricky. It’s using a little bit of linear algebra to accomplish the task. Here’s 
how: recall that bestline$coefficients is a vector of the coefficients for the best-fit 
line. In other words, it’s the vector (-10.426961, 9.489346). Now to find the y value for 
each x value, we need to multiply x by 9.489346, and then add -10.426961. If we make a 
matrix that has all 1’s in the first row, and the x values in the second row, then 
performing a matrix multiplication (using the %*% operator) between the coefficients 
and this matrix will yield us the y value for each point.  
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Figure 2 The best-fit line for the DanWoodEM points.  
 

Let’s take this one step further, and find the best-fit quadratic function (i.e., the best-fit 
function with an x2 term in it, instead of just an x term.) We type:  

 
> bestquad = lm(V2 ~ V1 + I(V1 ^ 2), data=danwood)  
 

The formula “V2 ~ I(V1 ^ 2)” says “create a model of the V2 variable based on (a) the 
V1 variable itself, and (b) the V1 variable squared.” The I() function is an inconvenient 
necessity to prevent R from simplifying the formula before it gets a chance to make the 
model.  

The coefficients of this quadratic can again be obtained:  
 
> bestquad$coefficients  
(Intercept)          V1     I(V1^ 2)  
   6.301899  -13.084786    7.564851  
  

The y-intercept is now -6.301899, the coefficient of the (linear) V1 variable is -
13.084786, and the V1-squared term is 7.564851. Therefore, the best fit quadratic to this 
set of points has equation y = 7.564851x2 - 13.084786x + 6.301899.  

To add it to the plot (in green), we type:  
 
> y2vals = bestquad$coefficients %*% rbind(1,xvals,xvals^ 2)  
> lines(xvals, y2vals, col="green")  
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giving the plot in Figure 3.  As you can see, the best-fit line is pretty close to intersecting 
all the points, but the best-fit quadratic is even better. 

  
 
Figure 3: The best-fit line and quadratic polynomial for the DanWoodEM points.  
 


