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Introduction 

We recommend that you work through this tutorial with a copy of R, answering all Quick 
Review Questions.  R is available from http://www.r-project.org. 
 The prerequisites to this tutorial are R Tutorials 1-6.  For those starting their use of 
R with Chapter 13, refer instead to Alternative Tutorial 7, RCTTutorial7Alt.m, which has 
no prerequisite.  Tutorial 7 prepares you to use R to complete projects for this chapter.  
The tutorial introduces the following functions and concepts: dot, matrix addition and 
multiplication, any, all, eig, unique, sortrows, and union.    The module also gives 
examples along with Quick Review Questions for you to do with R.  Execute all input 
cells to view the results of the examples. 

 

Matrix Operations for Modules 13.2-13.4 

When two matrices have the same size, we can perform the + or * operation.  The 
resulting matrix has the same size and each element of the result is the sum or product, 
respectively, of corresponding elements of the two operands.  The following commands 
record the elements of matrices one row at a time using, byrow = TRUE, and give 
examples of these operators: 

 
matA = matrix(c(3, 6, 5, -2, 0, 3), nrow = 2, byrow = TRUE) 
matB = matrix(c(4, -1, 0, 7, 8, 3), nrow = 2, byrow = TRUE) 
matA + matB 
matA * matB 
 

As the results show, adding element by element, the sum matA + matB =   

+  is .  Similarly, multiplying element-by-element for matA 

.* matB, we obtain . 

 For vectors that have the same number of elements, we can perform the dot 
product, which returns a number, the sum of the product of corresponding elements.  
The R function sum performs the operation on the elements of a vector, which is the 
element-by-element product of two vectors, accomplished with *.  Thus, the following 
command returns the dot product of [2 7 -1] and [5 3 4], which is 2 · 5 + 7 · 3 + -1 · 4 = 
10 + 21 -4 = 27: 

 
sum(c(2, 7, -1) * c(5, 3, 4)) 
 

3 6 5
−2 0 3

⎡

⎣
⎢

⎤

⎦
⎥

4 −1 0
7 8 3

⎡

⎣
⎢

⎤

⎦
⎥

7 5 5
5 8 6

⎡

⎣
⎢

⎤

⎦
⎥

12 −6 0
−14 0 9

⎡

⎣
⎢

⎤

⎦
⎥
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 The matrix-times-vector or matrix product operator is *.  Consider vector vecCol = 

, which the following command creates: 

 
vecCol = c(7, 1, -2) 
 

The product of matA and vecCol, matA %*% vecCol, produces a 2-by-1 column vector, 

.  With matC = , the following is an example of matrix 

multiplication, producing the result  : 

 
matC = matrix(c(7, -3, 1, 0, -2, 6), nrow = 3, byrow = TRUE) 
matC %*% matA 

Quick Review Question 1 Start a new Script.  In opening comments, have "R Tutorial 
7 Answers" and your name.  Save the file under the name RCTTutorial7Ans.R.  In 
the file, preface this and all subsequent Quick Review Questions with a comment 
that has "## QRQ" and the question number, such as follows: 

 
## QRQ 1 a 
 

a. Generate a 4-by-2 matrix mA, where the i-j element is the sum of i and j.  
Thus, after forming mA, mA[3, 2] should be 5, which is 3 + 2. 

b. Generate a 4-by-2 matrix mO of all ones. 
c. Give matrix sum of mA and mO. 
d. Define a vector u with elements 2 and 7. 
e. Define a vector v with elements 5 and 3. 
f. Give dot product of u and v. 
g. Generate a 2-by-3 matrix mB, where the i-j element is the difference of i and 

j, i - j. 
h. Give the matrix product of mA and mB. 

 
 We can take the matrix product of a square matrix by itself, which accomplishes the 
matrix power operation.  For example, suppose mS is defined as follows: 

 
mS = matrix(c(8, 4, 6, 7, 7, 1, 4, 6, 2), nrow = 3, byrow = TRUE) 

 
The matrix product of mS with itself, mS %*% mS, is the 3 ´ 3 matrix 

.  Mathematically, we can generate the same result by squaring mS, 

mS2.  In R, for larger powers, such as 5, we can start by assigning the identity matrix, 
diag(3),  
 

7
1
−2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

17
−20

⎡

⎣
⎢

⎤

⎦
⎥

7 −3
1 0
−2 6

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

27 42 26
3 6 5

−18 −12 8

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

116 96 64
109 83 51
82 70 34

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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to a variable, such as prod, and with a for loop repeatedly multiply by mS, as follows: 

 
prod = diag(3) 
for (i in 1:5) { 
 prod = prod %*% mS 
} 

Quick Review Question 2 
a. Generate a 3 ´ 3 matrix mC, where the i-j element is 2i - j. 
b. Calculate the matrix power mC7 using a loop as above. 
c. Show that the calculation of the matrix product of mC with itself seven times 

has the same value as the answer to Part b. 
  
 To test if all elements of a matrix or vector satisfy a condition, we employ the 
command all.  Similarly, to test if any of these elements satisfy a condition, we use any.  
Thus, the answer to the following segment is TRUE: 

 
b = c(3, 5, 2) 
all(b == b) 
 

Moreover, because 5 > 4, the following command returns TRUE: 
 
any(b > 4) 

Eigenvalues and Eigenvectors for Modules 13.3-13.4 

For square matrix M, the constant l is an eigenvalue and v is an eigenvector if 
multiplication of the constant by the vector accomplishes the same results as multiplying 
the matrix by the vector, that is, the following equality holds: 
  Mv = lv 
The dominant eigenvalue for a matrix is the largest eigenvalue for that matrix.  The R 
function eigen returns a vector containing the eigenvalues and a matrix with the 
associated eigenvectors for a square matrix argument, as the following illustrates: 

 
mat = matrix(c(0, 3, 6, 0.1, 0, 0, 0, 0.4, 0), nrow=3, byrow=TRUE) 
eigen(mat) 
 
$values 
[1]  0.7796379+0.0000000i -0.3898189+0.3948119i -0.3898189-0.3948119i 
 
$vectors 
              [,1]                  [,2]                  [,3] 
[1,] 0.98976800+0i -0.9761933+0.0000000i -0.9761933+0.0000000i 
[2,] 0.12695227+0i  0.1236176+0.1252010i  0.1236176-0.1252010i 
[3,] 0.06513397+0i  0.0016143-0.1268359i  0.0016143+0.1268359i 
 

In this case, two of the eigenvalues are complex numbers, and the dominant eigenvalue is 
the first element of lambda, 0.7796379.  (0.0000000i is 0.)  The corresponding 
eigenvectors are in the columns of $vectors.  Thus, the corresponding eigenvector, 

1 0 0
0 1 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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(0.98976800, 0.12695227, 0.06513397), of the dominant eigenvalue is the first column of 
$vectors, ignoring 0i.   
 To place the eigenvectors in separate variables, we store the results in a variable 
and employ $values and $vectors, as follows: 

 
eig = eigen(mat) 
lambdaLst = eig$values 
vecLst = eig$vectors  
 

The following illustrates that the matrix-vector product of mat and this vector equals the 
dominant eigenvalue times the vector.  

 
lambda = lambdaLst[1] 
v = vecLst[,1] 
mat %*% v 
lambda * v 

Each of the products returns the vector . 

Quick Review Question 3 

a. Define the matrix mD as . 

b. Return a list of eigenvalues of mD without calculating eigenvectors. 
c. Calculate a list of eigenvalues and eigenvectors of mD, and store the results in 

variables lLst and vLst, respectively. 
d. Verify that the matrix-vector product of mD and the dominant eigenvalue 

equals the product of that eigenvalue and the corresponding eigenvector. 

Additional Commands Used in Module 13.5 

In this section, we consider several R commands that are used in the file associated with 
Module 13.5. 
 As execution of the following shows, the R command unique with a list argument 
returns a list with the same elements but without duplicates, in this case (1, 5, 4).  The 
function does not change the argument, lst. 
 

lst = c(1, 5, 5, 4, 1, 5) 
unique(lst) 
lst 

 
 The function union returns the sorted union of two list arguments with no 
duplicates.  Thus, output of the following is the list 1 5 4 8 7 3: 

 
lst1 = c(1, 5, 5, 4, 1, 5) 
lst2 = c(4, 8, 7, 8, 3) 
union(lst1, lst2) 
 

0.7717
0.0990
0.0508

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

4 6
3 1

⎡

⎣
⎢

⎤

⎦
⎥
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 Using the command order, we can sort rows of a matrix in ascending or descending 

order based on a particular column.  Consider the matrix , which we define 

as follows: 
 
triples = matrix(c(5, 4, 5, 1, 7, 8, 2, 3, 9, 3, 5, 6), 
                 nrow = 4, byrow = TRUE) 
 

To sort in ascending order, based on the values in the second column, in brackets after 
the matrix name, we use order with an argument of the second column and a comma, as 
follows: 

 
triples[order(triples[,2]), ] 
 

The sorted output, with the second column elements in ascending order, is as follows: 
 
[,1] [,2] [,3] 
[1,]    2    3    9 
[2,]    5    4    5 
[3,]    3    5    6 
[4,]    1    7    8 
  

With a negative in front of the argument for order, the sort is in descending order.  
Consider the following command: 

 
triples[order(-triples[,2]), ] 
 

The results reveal a sorting on the second column in descending (reverse) order: 
 
ans = 
 
     1     7     8 
     3     5     6 
     5     4     5 
     2     3     9 

Quick Review Question 4 
a. Define a list (matrix), lst1, of a five numbers, where each element is a random 

integer between 0 and 2.  Display lst1. 
b. Using unique and an assignment statement, eliminate the duplicate pairs in 

lst1.  Display lst1after the unique command. 
c. Form another list, lst2, of 5 numbers, where each element is a random integer 

between 10 and 12.  Assign the union of lst1 and lst2 to lst3.  Display lst2 and 
lst3. 

d. Define a list, dup1, of a five ordered pairs of numbers, where the first element 
in each pair is a random integer between 0 and 2 and the second element is a 
random integer between 10 and 12.  Write a command to return dup1, sorted 
by the first elements from highest to lowest. 

5 4 5
1 7 8
2 3 9
3 5 6

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥


