
Leslie Matrix Parallelization Tutorial
by Matt Beasley

Model from Module 13.3, “Time after Time—Age- and Stage-Structured Models”

Introduction to Computational Science:
Modeling and Simulation for the Sciences, 2nd Edition

Angela B. Shiflet and George W. Shiflet
Wofford College

© 2014 by Princeton University Press

This tutorial details how to add MPI functionality to a C program that uses Leslie matrices. Each
step has a corresponding spot or spots in the program leslieMat-serial.c where the code should be
edited. These spots will be indicated by the following line(s) for each step x.

/************************* x *************************/

1. Include the MPI library header file.

2. Variables iRank and iProcSize have already been initialized, so initialize MPI itself and the
rank and size using the appropriate MPI functions.

3. Only the root process needs to check the command line arguments, so use a conditional for
the section of code that parses the command line arguments.

4. Use the MPI broadcast function to tell all the processes what the value of statusContinue is
so that they can exit in the case of an error.

5. In the case that statusContinue is 0, there was an error, so use a conditional such that only
the root process calls the print_usage function and then include the MPI function to end
MPI for all processes before exiting.

6. Use a conditional so that only the root process calls the load_values function and then have
the root process store iSize, iWidth, and iGenerations into the array aiTemp.

7. Use the MPI broadcast function to send the array that was just made to the other processes.
Then, for the processes that are not the root, set the variables iSize, iWidth, and
iGenerations to the appropriate values of aiTemp and use the function malloc_double_list
to make an array ptrValueArray with size iSize. Then, use the MPI broadcast function once
again so that every process has the values of ptrValueArray.

8. Use a conditional such that the root process is the only process to call the
query_distribution function and then have every other process call malloc_double_list to
create the array ptrDistArray with size iWidth. Then, use the MPI broadcast function so
that every process has the values of ptrDistArray.

Leslie Matrix Parallelization Tutorial 2	

9. In the function mat_product_mat, which is called by array_to_power, the second for loop
needs to have new parameters that are adjusted for parallelization. Since every process is
calculating a different section, the values of i in this outermost loop need to reflect the rank
of the current process. When i is initialized, iWidth needs to be multiplied by iRank and
divided by iSize to obtain the correct starting value for the current process. Similarly, i will
be incremented until it is equal to the value obtained when iWidth is multiplied by iRank +
1 and then divided by iSize.

10. In the function mat_product_mat, use the MPI_Allreduce function with MPI_IN_PLACE as
the send buffer to put together the work each process did and obtain ptrResults.

11. After array_to_power is called, the root process is the only process that needs to call the
mat_product_vector function. Use a conditional to do this as well as have all of the other
processes call malloc_double_list to create the array ptrResultValues with size iWidth.
Then, use the MPI broadcast function to send the values of ptrResultValues to every
process.

12. Use the MPI barrier function to make sure every process has reached this point of the code
before continuing.

13. Use a conditional to make sure only the root process calls the print_results function.

14. Call the appropriate MPI function to end MPI in the main function.

